Time Scale Approach to One Parameter Plane Motion by Complex Numbers

Show more

This paper presents building one-parameter motion by complex numbers on a
time scale. Firstly, we assumed that ** E** and

References

[1] Aulbach, B. and Hilger, S. (1990) Linear Dynamic Processes within Homogeneous Time Scale. Nonlinear Dynamics and Quantum Dynamical System, Berlin Akademie Verlag, 9-20.

[2] Bohner, M. and Peterson, A. (2003) Advances in Dynamic Equations on Time Scales, Birkh User.

[3] Bohner, M. and Peterson, A. (2001) Dynamic Equations on Time Scales, An Introduction with Applications, Birkh User.

[4] Bohner, M. and Guseyinov, G. (2005) An introduction to Complex Functions on Products of Two Time Scales. Journal of Difference Equations and Applications, 12.

[5] Bottema, O. and Roth, B. (1990) Theoretical Kinematics. Dover Publications, Mineola.

[6] Blaschke, W. (1960) Kinematik und Quaternionen. Mathematische Monographien. Springer, Berlin.

[7] Blaschke, W. and Muller, H.R. (1956) Ebene Kinematik, Oldenbourg, Munchen.