[1] Ritter, C. and Tanner, M. (1992) Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler. Journal of the American Statistical Association, 87, 861-868.
http://dx.doi.org/10.1080/01621459.1992.10475289
[2] Ohtsuka, Y. and Kakamu, K. (2009) Estimation of Electric Demand in Japan: A Bayesian Spatial Autoregressive AR(p) Approach. In: Schwartz, L.V., Ed., Inflation: Causes and Effects, Nova Science Publisher, New York, 156-178.
[3] Anselin, L. (2003) Spatial Externalities, Spatial Multipliers, and Spatial Econometrics. International Regional Science Review, 26, 153-166.
http://dx.doi.org/10.1177/0160017602250972
[4] Gelfand, A.E., Banerjee, S., Sirmans, C.F., Tu, Y. and Ong, S.E. (2007) Multilevel Modeling Using Spatial Processes: Application to the Singapore Housing Market. Computational Statistics and Data Analysis, 51, 3567-3579.
http://dx.doi.org/10.1080/01621459.1990.10476213
[5] Anselin, L. (2010) Thirty Years of Spatial Econometrics. Papers in Regional Science, 89, 3-25.
http://dx.doi.org/10.1111/j.1435-5957.2010.00279.x
[6] Ord, K. (1975) Estimation Methods for Models for Spatial Interaction. Journal of the American Statistical Association, 70, 120-126.
http://dx.doi.org/10.1080/01621459.1975.10480272
[7] Lee, L.F. (2004) Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models. Econometrica, 72, 1899-1925.
http://dx.doi.org/10.1111/j.1468-0262.2004.00558.x
[8] Conley, T.G. (1999) GMM Estimation with Cross Sectional Dependence. Journal of Econometrics, 92, 1-45.
http://dx.doi.org/0.1016/S0304-4076(98)00084-0
[9] Kelejian, H.H. and Prucha, I.R. (1999) A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model. International Economic Review, 40, 509-533.
http://dx.doi.org/10.1111/1468-2354.00027
[10] Anselin, L. (1980) A Note on Small Sample Properties of Estimators in A First-order Spatial Autoregressive Model. Environment and Planning A, 14, 1023-1030.
http://dx.doi.org/10.1068/a141023
[11] LeSage, J.P. (1997) Regression Analysis of Spatial Data. The Journal of Regional Analysis and Policy, 27, 83-94.
[12] Kakamu, K. and Wago, H. (2008) Small-Sample Properties of Panel Spatial Autoregressive Models: Comparison of the Bayesian and Maximum Likelihood Methods. Spatial Economic Analysis, 3, 305-319.
http://dx.doi.org/10.1080/17421770802353725
[13] Holloway, G., Shankar, B. and Rahman, S. (2002) Bayesian Spatial Probit Estimation: A Primer and an Application to HYV Rice Adoption. Agricultural Economics, 27, 383-402.
http://dx.doi.org/10.1111/j.1574-0862.2002.tb00127.x
[14] Ohtsuka, Y., Oga, T. and Kakamu, K. (2010) Forecasting Electricity Demand in Japan: A Bayesian Spatial Autoregressive ARMA Approach. Computational Statistics & Data Analysis, 54, 2721-2735.
http://dx.doi.org/10.1016/j.csda.2009.06.002
[15] Tierney, L. (1994) Markov Chains for Exploring Posterior Distributions (with Discussion). Annals of Statistics, 22, 1701-1728.
http://dx.doi.org/10.1214/aos/1176325750
[16] Chib, S. and Greenberg, E. (1994) Bayes Inference in Regression Models with ARMA( ) Errors. Journal of Econometrics, 64, 183-206.
http://dx.doi.org/10.1016/0304-4076(94)90063-9
[17] Watanabe, T. (2001) On Sampling the Degree-of-Freedom of Student’s-t Disturbances. Statistics & Probability Letters, 52, 177-181.
http://dx.doi.org/10.1016/S0167-7152(00)00221-2
[18] Mitsui, H. and Watanabe, T. (2003) Bayesian Analysis of GARCH Option Pricing Models. Journal of the Japan Statistical Society (Japanese Issue), 33, 307-324.
[19] LeSage, J.P. and Pace, R.K. (2008) Introduction to Spatial Econometrics (Statistics: A Series of Textbooks and Monographs). Chapman and Hall/CRC, London.
[20] Stakhovych, S. and Bijmolt, T.H.A. (2009) Specification of Spatial Models: A Simulation Study on Weights Matrices. Papers in Regional Science, 88, 389-408.
http://dx.doi.org/10.1111/j.1435-5957.2008.00213.x
[21] Sun, D., Tsutakawa, R.K. and Speckman, P.L. (1999) Posterior Distribution of Hierarchical Models Using CAR(1) Distributions. Biometrika, 86, 341-350.
http://dx.doi.org/10.1093/biomet/86.2.341
[22] Bauwens, L. and Lubrano, M. (1998) Bayesian Inference on GARCH Models Using the Gibbs Sampler. The Econometrics Journal, 1, 23-46.
http://dx.doi.org/10.1111/1368-423X.11003
[23] Chib, S. and Greenberg, E. (1998) Analysis of Multivariate Probit Models. Biometrika, 85, 347-361.
http://dx.doi.org/10.1093/biomet/85.2.347
[24] Chib, S. and Greenberg, E. (1995) Understanding the Metropolis-Hastings Algorithm. The American Statistician, 49, 327-335.
[25] Gelfand, A.E. and Smith, A.F.M. (1990) Sampling-Based Approaches to Calculating Marginal Densities. Journal of the American Statistical Association, 85, 398-409.
http://dx.doi.org/10.1080/01621459.1990.10476213
[26] Asai, M. (2005) Comparison of MCMC Methods for Estimating Stochastic Volatility Models. Computational Economics, 25, 281-301.
http://dx.doi.org/10.1007/s10614-005-2974-4
[27] Asai, M. (2006) Comparison of MCMC Methods for Estimating GARCH Models. Journal of the Japan Statistical Society, 36, 199-212.
http://dx.doi.org/10.14490/jjss.36.199
[28] Chib, S. (2001) Markov Chain Monte Carlo Methods: Computation and Inference. In: Heckman, J.J. and Leamer, E., Eds., Handbook of Econometrics, Elsevier, Amsterdam, 3569-3649.
[29] Doornik, J.A. (2006) Ox: An Object Oriented Matrix Programming Language. Timberlake Consultants Press, London.