NS  Vol.7 No.1 , January 2015
The Classical Binary and Triplet Distribution Functions for Dilute Relativistic Plasma
Abstract: The aim of this paper is to calculate the binary and triplet distribution functions for dilute relativistic plasma in terms of the thermal parameter μ where , is the mass of charge; c is the speed of light; k is the Boltzmann’s constant; and T is the absolute temperature. Our calculations are based on the relativistic Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. We obtain classical binary and triplet distribution functions for one- and two-component plasmas. The excess free energy and pressure are represented in the forms of a convergent series expansions in terms of the thermal parameter μ.
Cite this paper: Hussein, N. , Eisa, D. and Sayed, E. (2015) The Classical Binary and Triplet Distribution Functions for Dilute Relativistic Plasma. Natural Science, 7, 42-54. doi: 10.4236/ns.2015.71005.

[1]   Droz-Vincent, P. (1997) Direct Interactions in Relativistic Statistical Mechanics. Foundations of Physics, 27, 363-387.

[2]   Bogoliubov, N.N. (1946) Probleme der Dynamischen Theorie in der Statistischen Physik. Moskau.

[3]   Simonella, S. (2011) BBGKY Hierarchy for Hard Sphere Systems. Ph.D. Dissertation, Sapienza University of Rome, Rome.

[4]   Kraeft, W.D., Kremp, D. and Ebeling, W. (1986) Quantum Statistics of Charged Particle Systems. Akademie Verlag, Berlin.

[5]   Kahlbaum, T. (1999) Density Expansions of the Reduced Distribution Functions and the Excess Free Energy for Plasma with Coulomb and Short-Range Interactions. Contributions to Plasma Physics, 39, 181-184.

[6]   Hussein, N.A. and Eisa, D.A. (2011) The Quantum Equation of State of Fully Ionized Plasmas. Contributions to Plasma Physics, 51, 44-50.

[7]   Eisa, D.A. (2012) The Classical Binary and Triplet Distribution Functions for Two Component Plasma. Contributions to Plasma Physics, 52, 261-275.

[8]   Arendt Jr., P.N. and Eilek, J.A. (2000) The Pair Cascade in Strong and Weak Field Pulsars. Pulsar Astronomy—2000 and beyond, 202, 445-448.

[9]   Barcons, X. and Lapiedra, R. (1985) Statistical Mechanics of Classical Dilute Relativistic Plasmas in Equilibrium. Journal of Physics A: Mathematical and General, 18, 271-285.

[10]   Swisdak, M. (2013) The Generation of Random Variates from a Relativistic Maxwellian Distribution. Physics of Plasmas, 20, Article ID: 062110.

[11]   Ares de Parga, G. and Lopez-Carrera, B. (2011) Relativistic Statistical Mechanics vs. Relativistic Thermodynamics. Entropy, 13, 1664-1693.

[12]   Treumann, R.A., Nakamura, R. and Baumjohann, W. (2011) A Model of So-Called “Zebra” Emissions in Solar Flare Radio Burst Continua. Annales Geophysicae, 29, 1673-1682.

[13]   Sciortino, F. and Kob, W. (2001) Debye-Waller Factor of Liquid Silica: Theory and Simulation. Physical Review Letters, 86, 648-651.

[14]   Rosenfeld, Y., Levesque, D. and Weis, J.J. (1990) Free-Energy Model for the Inhomogeneous Hard-Sphere Fluid Mixture: Triplet and Higher-Order Direct Correlation Functions in Dense Fluids. The Journal of Chemical Physics, 92, 6818-6832.

[15]   Lapiedra, R. and Santos, E. (1981) Classical Relativistic Statistical Mechanics: The Case of a Hot Dilute Plasma. Physical Review D, 1, 2181-2188.

[16]   Alam, M.S., Masud, M.M. and Mamun, A.A. (2014) Effects of Two-Temperature Superthermal Electrons on Dust-Ion-Acoustic Solitary Waves and Double Layers in Dusty Plasmas. Astrophysics and Space Science, 349, 245-253.

[17]   Masud, M.M., Kundu, N.R. and Mamun, A.A. (2013) Obliquely Propagating Dust-Ion Acoustic Solitary Waves and Their Multidimensional Instabilities in Magnetized Dusty Plasmas with Bi-Maxwellian Electrons. Canadian Journal of Physics, 91, 530-536.

[18]   Lazar, M., Stockem, A. and Schlickeiser, R. (2010) Towards a Relativistically Correct Characterization of Counterstreaming Plasmas. I. Distribution Functions. Open Plasma Physics Journal, 3, 138-147.

[19]   Lapiedra, R. and Santos, E. (1983) Classical Dilute Relativistic Plasma in Equilibrium. Two-Particle Distribution Function. Physical Review A, 27, 422-430.

[20]   Turski, L.A. (1974) Pair Correlation Function for a System with Velocity-Dependent Interactions. Journal of Statistical Physics, 11, 1-16.

[21]   Kosachev, V.V. and Trubnikov, B.A. (1969) Relativistic Corrections to the Distribution Functions of Particles in a High-Temperature Plasma. Nuclear Fusion, 9, 53-56.

[22]   Bel, L., Salas, A. and Sanchez, J.M. (1973) Approximate Solutions of Predictive Relativistic Mechanics for the Electromagnetic Interaction. Physical Review D, 7, 1099-1106.

[23]   Kirkwood, J.G. (1935) Statistical Mechanics of Fluid Mixtures. The Journal of Chemical Physics, 3, 300-313.

[24]   Bonitz, M., Henning, C. and Block, D. (2010) Complex Plasmas: A Laboratory for Strong Correlations. Reports on Progress in Physics, 73, Article ID: 066501.

[25]   Barrat, J.L., Hansen, J.P. and Pastore, G. (1988) On the Equilibrium Structure of Dense Fluids: Triplet Correlations, Integral Equations and Freezing. Molecular Physics, 63, 747-767.

[26]   Kalman, G.J., Rommel, J.M., Blagoev, K. and Blagoev, K. (1998) Strongly Coupled Coulomb Systems. Springer, Berlin.