AJAC  Vol.6 No.2 , January 2015
Kinetics and Vapor Pressure Studies of bis(N-alkyl-2-hydroxonapthaldimine)nickel (II) (N-R = methyl to pentyl) Complexes
Abstract: The complexes of bis[N-alkyl-2-hydroxonapthaldimine]nickel(II) (N-alkyl = methyl, ethyl, propyl, butyl or pentyl) were synthesized and their volatilization in N2 atmosphere was demonstrated by the TG-based transpiration technique. The equilibrium vapor pressure of the complexes over a temperature span of 470 - 590 K was determined by adapting a horizontal dual arm single furnace thermoanalyser as a transpiration apparatus. It yielded as 153.1 (±1.9), 122.9 (±0.3), 147.6 (±10.7), 151.8 (±10.9) and 114.7 (±5.3) k·Jmol1 respectively. The entropies of vaporization for these complexes as calculated from the intercept of the linear fit expressions were found to be 319.7 (±3.9), 229.9 (±5.8), 317.8 (±17.2), 319.7 (±19.1) and 254.6 (±9.6) Jmo1·K1 respectively. The non-isothermal vaporization activation energy was determined from Arrhenius and Coats-Redfern methods.
Cite this paper: Johnson, M. , Jeevan, T. , Arockiasamy, S. and Nagaraja, K. (2015) Kinetics and Vapor Pressure Studies of bis(N-alkyl-2-hydroxonapthaldimine)nickel (II) (N-R = methyl to pentyl) Complexes. American Journal of Analytical Chemistry, 6, 118-126. doi: 10.4236/ajac.2015.62011.

[1]   Premkumar, P.A., Dasgupta, A., Kuppusami, P., Parameswaran, P., Mallika, C., Nagaraja, K.S. and Raghunathan, V.S. (2006) Synthesis and Characterization of Ni and Ni/CrN Nanocomposite Coatings by Plasma Assisted Metal-Organic CVD. Chemical Vapor Deposition, 12, 39-45.

[2]   Hunde, E.T. and Watkins, J.J. (2004) Reactive Deposition of Cobalt and Nickel Films from Their Metallocenes in Supercritical Carbon Dioxide Solution. Chemistry of Materials, 16, 498-503.

[3]   Bakovets, V.V., Mitkin, V.N. and Gelfond, N.V. (2005) Mechanism of Ni Film CVD with a Ni(Ktfaa)2 Precursor on a Silicon Substrate. Chemical Vapor Deposition, 11, 368-374.

[4]   Bakovets, V.V., Mitkin, V.N. and Gelfond, N.V. (2005) Mechanism of Ni Film CVD with a Ni(ktfaa)2 Precursor on a Copper Substrate. Chemical Vapor Deposition, 11, 112-117.

[5]   Zhou, M., Lin, W.Y., de Tacconi, N.R. and Rajeshwar, K. (1996) Metal/Semiconductor Electrocomposite Photoelectrodes: Behavior of Ni/TiO2 Photoanodes and Comparison of Photoactivity of Anatase and Rutile Modifications. Journal of Electroanalytical Chemistry, 402, 221-224.

[6]   Brissonneau, L. and Vahlas, C. (1999) MOCVD-Processed Ni Films from Nickelocene. Part I: Growth Rate and Morphology. Chemical Vapor Deposition, 5, 135-142.<135::AID-CVDE135>3.0.CO;2-1

[7]   Stauf, G., Driscoll, D., Dowben, P., Barfuss, S. and Grade, M. (1987) Iron and Nickel Thin Film Deposition via Metallocene Decomposition. Thin Solid Films, 153, 421-430.

[8]   Kang, J.K. and Ree, S.W. (2000) Metalorganic Chemical Vapor Deposition of Nickel Films from Ni(C5H5)2/H2. Journal of Materials Research, 15, 1828-1833.

[9]   Maruyama, T. and Tago, T. (1993) Nickel Thin Films Prepared by Chemical Vapor Deposition from Nickel Acetylacetonate. Journal of Materials Science, 28, 5345-5348.

[10]   Becht, M., Gallus, J., Hunziker, M., Atamny, F. and Dahmen, K.H. (1995) Nickel Thin Films Grown by MOCVD Using Ni(dmg)2 as Precursor. Journal de Physique IV, C5, 465-472.

[11]   Hemert, R.V., Spenlove, L. and Sievers, S. (1965) Vapor Deposition of Metals by Hydrogen Reduction of Metal Chelates. Journal of the Electrochemical Society, 112, 1123-1126.

[12]   Lane, P.A., Crosbie, M.J., Wright, P.J., Donohue, P.P., Hirst, P.J., Reeves, C.L., Anthony, C.J., Jones, A.C., Todd, M.A. and Williams, D.J. (2003) The Metal-Organic Chemical Vapor Deposition of Lanthanum Nickelate Electrodes for Use in Ferroelectric Devices. Chemical Vapor Deposition, 9, 87-92.

[13]   Anthony, C.J. (1998) MOCVD of Electroceramic Oxides: A Precursor Manufacturer’s Perspective. Chemical Vapor Deposition, 4, 169-179.<169::AID-CVDE169>3.3.CO;2-Y

[14]   Wood, J.L. and Jones, M. (1963) Heats of Formation and Coordinate Bond Energies of Some Nickel(II) Chelates. Journal of Physical Chemistry, 67, 1049-1051.

[15]   Pankajavalli, R., Mallika, C., Sreedharan, O.M., Premila, M. and Gopalan, P. (1998) Vapor Pressure of C60 by a Transpiration Method Using a Horizontal Thermobalance. Thermochimica Acta, 316, 101-108.

[16]   Arockiasamy, S., Sreetharan, O.M., Mallika, C., Raghunathan, V.S. and Nagaraja, K.S. (2007) Development, Characterisation and Rapid Evaluation of Standard Enthalpies of Vaporisation and Fusion of Volatile Bis(N-R-Salicylaldimine) Nickel(II) (n-R = Methyl to Pentyl) Complexes for Its MOCVD Applications. Chemical Engineering Science, 62, 1703-1711.

[17]   Burnham, L., Dollimore, D. and Alexander, K. (2001) Calculation of the Vapor Pressure-Temperature Relationship Using Thermogravimetry for the Drug Allopurinol. Thermochimica Acta, 367, 15-22.

[18]   Joseph, K., Sridharan, R. and Gnanasekaran, T. (2000) Kinetics of Thermal Decomposition of Th(C2O4)2•6H2O. Journal of Nuclear Materials, 281, 129-139.