MSCE  Vol.3 No.1 , January 2015
Effect of Nitriding Current Density on the Surface Properties and Crystallite Size of Pulsed Plasma-Nitrided AISI 316L

In this work, plasma-nitrided AISI 316L stainless steel samples were performed by ion nitriding process under pulsed direct current (DC) discharge at different current densities (1 to 2.5 mA/ cm2). The effect of nitriding current density on the size of crystalline coherently diffracting domains (crystallite size) and strain grade was investigated using X-ray diffraction (XRD) coupled with Williamson-Hall method. Additionally, hardness and wear resistance of the nitriding layer were characterized using a Vickers indenter and pin-on-disk technique respectively. Results showed a decrease in crystallite size from 99 nm for untreated samples to 1.4 nm for samples nitrided at 2.5 mA/cm2 promoted both: an increase in hardness from 226 HV25g to 1245 HV25g, and a considerably decrease in volume loss by wear effect.

Cite this paper
Díaz-Guillén, J. , Granda-Gutiérrez, E. , Vargas-Gutiérrez, G. , Díaz-Guillén, M. , Aguilar-Martínez, J. and Álvarez-Contreras, L. (2015) Effect of Nitriding Current Density on the Surface Properties and Crystallite Size of Pulsed Plasma-Nitrided AISI 316L. Journal of Materials Science and Chemical Engineering, 3, 45-51. doi: 10.4236/msce.2015.31007.
[1]   Saleh, Z.B., Shahryari, A. and Omanovic, S. (2007) Enhancement of Corrosion Resistance of a Biomedical Grade 316LVM Stainless Steel by Potentiodynamic Cyclic Polarization. Thin Solid Films, 515, 4727-4737.

[2]   Meletis, E. (2002) Intensified Plasma-Assisted Processing: Science and Engineering. Surface and Coatings Technology, 149, 95-113.

[3]   Tokaji, K., Kohyama, K. and Akita, M. (2004) Fatigue Behaviour and Fracture Mechanism of a 316 Stainless Steel Hardened by Carburizing. International Journal of Fatigue, 26, 543-551.

[4]   Ceschini, L. and Minak, G. (2008) Fatigue Behaviour of Low Temperature Carburised AISI 316L Austenitic Stainless Steel. Surface and Coatings Technology, 202, 1778-1784.

[5]   Riviere, J.P., Templier, C., Declemy, A., Redjdal, O., Chumlyakov, Y. and Abrasonis, G. (2007) Microstructure of Expanded Austenite in Ion-Nitrided AISI 316L Single Crystals. Surface and Coatings Technology, 201, 8210-8214.

[6]   Mingolo, N., Tschiptschin, A.P. and Pinedo, C.E. (2006) On the Formation of Expanded Austenite during Plasma Nitriding of an AISI 316L Austenitic Stainless Steel. Surface and Coatings Technology, 201, 4215-4218.

[7]   Christiansen, T. and Somers, M.A.J. (2006) Metallurgical and Materials Transactions A, 37A, 675.

[8]   Gontijo, L.C., Machado, R., Miola, E.J., Catselleti, L.C., Alcantara, N.G. and Nascente, P.A.P. (2006) Study of the S Phase Formed on Plasma-Nitrided AISI 316L Stainless Steel. Materials Science and Engineering: A, 431, 315-321.

[9]   Oddershede, J., Christiansen, T.L. and St?hl, K. (2008) Modelling the X-Ray Powder Diffraction of Nitrogen-Expanded Austenite Using the Debye Formula. Journal of Applied Crystallo-graphy, 41, 537-543.

[10]   Jiang, J.C. and Meletis, I. (2000) Microstructure of the Nitride Layer of AISI 316 Stainless Steel Produced by Intensified Plasma Assisted Processing. Journal of Applied Physics, 88, 4026.

[11]   Pielaszek, J. (2002) In: Knauth, P. et al., Eds., Nanostructured Mate-rials. Selected Synthesis Methods, Properties and Applications, Kluwer Academic Publishers, New York.

[12]   Nosei, L., Farina, S., ávalos, M., Náchez, L., Gómez, B.J. and Feugeas, J. (2008) Corrosion Behavior of Ion Nitrided AISI 316L Stainless Steel. Thin Solid Films, 516, 1044-1050.

[13]   Díaz Guillén, J.C., Campa Castilla, A., Pérez Aguilar, S.I., Granda Gutiérrez, E.E., Garza Gómez, A., Candelas Ramírez, J. and Méndez Méndez, R. (2009) Superfcies y Vacío, 21, 1.

[14]   Williamson, G.K. and Hall, W.H. (1953) Acta Metall., 1, 23-31.

[15]   Saravanan, P., Raja, V.S. and Mukherjee, S. (2007) Effect of Plasma Immersion Ion Implantation of Nitrogen on the Wear and Corrosion Behavior of 316LVM Stainless Steel. Surface and Coatings Technology, 201, 8131-8135.

[16]   ASTM G99 Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM Standard. (2010).

[17]   Marchev, K., Landis, M., Vallerio, R., Cooper, C.V. and Giessen, B.C. (1999) The m Phase Layer on ion Nitrided Austenitic Stainless Steel (III): An Epitaxial Relationship between the m Phase and the γ Parent Phase and a Review of Structural Identifications of This Phase. Surface and Coatings Technology, 116, 184-188.

[18]   Abrasonis, G., Riviere, J.P., Templier, C., Pranevicius, L. and Barradas, N.P. (2005) Journal of Applied Physics, 97, 124906.

[19]   Manova, D., Lutz, J., Gerlach, J.W., Neumann, H. and M?ndl, S. (2012) Surf. Coat. Tech., 5, S290.

[20]   Granda-Gutiérrez, E.E., López-Callejas, R., Pe?a-Eguiluz, R., Valencia, R.A., Mercado-Cabrera, A., Barocio, S.R., de la Piedad-Beneitez, A., Benítez-Read, J.S. and Pacheco-Sotelo, J.O. (2008) V-I Curves and Plasma Parameters in a High Density DC Glow Discharge Generated by a Current-Source. Journal of Physics: Conference Series, 100, 062019.

[21]   Borgioli, F., Fossati, A., Galvanetto, E., Bacci, T. and Pradelli, G. (2006) Glow Discharge Nitriding of AISI 316L Austenitic Stainless Steel: Influence of Treatment Pressure. Surface and Coatings Technology, 200, 5505-5513.

[22]   Barhai, P.K., Kumari, N., Banerjee, I., Pabi, S.K. and Mahapatra, S.K. (2010) Study of the Effect of Plasma Current Density on the Formation of Titanium Nitride and Titanium Oxynitride Thin Films Prepared by Reactive DC Magnetron Sputtering. Vacuum, 84, 896-901.

[23]   Ruset, C., Ciuca, S. and Grigore, E. (2003) The Influence of the Sputtering Process on the Constitution of the Compound Layers Obtained by Plasma Nitriding. Surface and Coatings Technology, 174-175, 1201-1205.