JCT  Vol.6 No.1 , January 2015
Simultaneous Dual Selective Targeted Delivery of Two Covalent Gemcitabine Immunochemotherapeutics and Complementary Anti-Neoplastic Potency of [Se]-Methylselenocysteine
ABSTRACT


The anti-metabolite chemotherapeutic, gemcitabine is relatively effective for a spectrum of neoplastic conditions that include various forms of leukemia and adenocarcinoma/carcinoma. Rapid systemic deamination of gemcitabine accounts for a brief plasma half-life but its sustained administration is often curtailed by sequelae and chemotherapeutic-resistance. A molecular strategy that diminishes these limitations is the molecular design and synthetic production of covalent gemcitabine immunoche-motherapeutics that possess properties of selective “targeted” delivery. The simultaneous dual selective “targeted” delivery of gemcitabine at two separate sites on the external surface membrane of a single cancer cell types represents a therapeutic approach that can increase cytosol chemotherapeutic deposition; prolong chemotherapeutic plasma half-life (reduces administration frequency); minimize innocent exposure of normal tissues and healthy organ systems; and ultimately enhance more rapid and thorough resolution of neoplastic cell populations. Materials and Methods: A light-reactive gemcitabine intermediate synthesized utilizing succinimidyl 4,4-azipentanoate was covalently bound to anti-EGFR or anti-HER2/neu IgG by exposure to UV light (354-nm) resulting in the synthesis of covalent immunoche-motherapeutics, gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] between gemcitabine-equivalent concentrations of 10-12 M and 10-6 M was determined utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKRr-3). The organoselenium compound, [Se]-methylselenocysteine was evaluated to determine if it complemented the anti-neoplastic potency of the covalent gemcitabine immunoche-motherapeutics. Results: Gemcitabine-(C4-amide)-[anti-EGFR], gemcitabine-(C4-amide)-[anti-HER2/neu] and the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] all had anti-neoplastic cytotoxic potency against mammary adenocarcinoma. Gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] produced progressive increases in anti-neoplastic cytotoxicity that were greatest between gemcitabine-equivalent concentrations of 10-9 M and 10-6 M. Dual simultaneous combinations of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] produced levels of anti-neoplastic cytotoxicity intermediate between each of the individual covalent gemcitabine immunochemotherapeutics. Total anti-neoplastic cytotoxicity of the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] against chemothe-rapeutic-resistant mammary adenocarcinoma (SKBr-3) was substantially higher when formulated with [Se]-methylsele-no-cysteine.



Cite this paper
Coyne, C. , Jones, T. and Bear, R. (2015) Simultaneous Dual Selective Targeted Delivery of Two Covalent Gemcitabine Immunochemotherapeutics and Complementary Anti-Neoplastic Potency of [Se]-Methylselenocysteine. Journal of Cancer Therapy, 6, 62-89. doi: 10.4236/jct.2015.61009.
References
[1]   Morgillo, F., Kim, W., Kim, E., Ciardiello, F., Hong, W. and Lee, H. (2007) Implications of the Insulin-Like Growth Factor-IR Pathway in the Resistance of Non-Small Cell Lung Cancer Cells to Treatment with Gefitinib. Clinical Cancer Research, 13, 2795-2803.
http://dx.doi.org/10.1158/1078-0432.CCR-06-2077

[2]   Morgillo, F., Woo, J.K., Kim, E.S., Hong, W.K. and Lee, H.Y. (2006) Heterodimerization of Insulin-Like Growth Factor Receptor/Epidermal Growth Factor Receptor and Induction of Surviving Expression Counteract the Anti-Tumor Action of Erlotinib. Cancer Research, 66, 10100-10111.
http://dx.doi.org/10.1158/0008-5472.CAN-06-1684

[3]   Sartore-Bianchi, A., Di Nicolantonio, F., Nichelatti, M., Molinari, F., De Dosso, S., Saletti, P., Martini, M., Cipani, T., Marrapese, G., Mazzucchelli, L., Lamba, S., Veronese, S., Frattini, M., Bardelli, A. and Siena, S. (2009) Multi-Determinants Analysis of Molecular Alterations for Predicting Clinical Benefit to EGFR-Targeted Monoclonal Anti-bodies in Colorectal Cancer. PLoS ONE, 4, e7287.
http://dx.doi.org/10.1371/journal.pone.0007287

[4]   Weickhardt, A., Tebbutt, N. and Mariadason, J. (2010) Strategies for Overcoming Inherent and Acquired Resistance to EGFR Inhibitors by Targeting Downstream Effectors in the RAS/PI3K Pathway. Current Cancer Drug Targets, 10, 824-833. http://dx.doi.org/10.2174/156800910793357961

[5]   Modjtahedi, H. and Essapen, S. (2009) Epidermal Growth Factor Receptor Inhibitors in Cancer Treatment: Advances, Challenges and Opportunities. Anticancer Drugs, 20, 851-855.
http://dx.doi.org/10.1097/CAD.0b013e3283330590

[6]   Dempke, W. and Heinemann, V. (2010) Ras Mutational Status Is a Biomarker for Resistance to EGFR Inhibitors in Colorectal Carcinoma. Anticancer Research, 30, 4673-4677.

[7]   Ritter, C.A., Perez-Torres, M., Rinehart, C., Guix, M., Dugger, T., Engelman, J.A. and Arteaga, C.L. (2007) Human Breast Cancer Cells Selected for Resistance to Trastuzumab in-Vivo Overexpress Epidermal Growth Factor Receptor and ErbB Ligands and Remain Dependent on the ErbB Receptor Network. Clinical Cancer Research, 13, 4909-4919.
http://dx.doi.org/10.1158/1078-0432.CCR-07-0701

[8]   Mitra, D., Brumlik, M.J., Okamgba, S.U., Zhu, Y., Duplessis, T.T., Parvani, J.G., Lesko, S.M., Brogi, E. and Jones, F.E. (2009) An Oncogenic Isoform of HER2 Associated with Locally Disseminated Breast Cancer and Trastuzumab Resistance. Molecular Cancer Therapeutics, 8, 2152-2162.
http://dx.doi.org/10.1158/1535-7163.MCT-09-0295

[9]   Köninki, K., Barok, M., Tanner, M., Staff, S., Pitkänen, J., Hemmilä, P., Ilvesaro, J. and Isola, J. (2010) Multiple Molecular Mechanisms Underlying Trastuzumab and Lapatinib Resistance in JIMT-1 Breast Cancer Cells. Cancer Letters, 294, 211-219. http://dx.doi.org/10.1016/j.canlet.2010.02.002

[10]   Oliveras-Ferraros, C., Vazquez-Martin, A., Cufí, S., Torres-Garcia, V.Z., Sauri-Nadal, T., Barco, S.D., Lopez-Bonet, E., Brunet, J., Martin-Castillo, B. and Menendez, J.A. (2011) Inhibitor of Apoptosis (IAP) Survivin Is Indispensable for Survival of HER2 Gene-Amplified Breast Cancer Cells with Primary Resistance to HER1/2-Targeted Therapies. Biochemical and Biophysical Research Communications, 407, 412-419. http://dx.doi.org/10.1016/j.bbrc.2011.03.039

[11]   Barok, M., Tanner, M., Köninki, K. and Isola, J. (2011) Trastuzumab-DM1 Causes Tumour Growth Inhibition by Mitotic Catastrophe in Trastuzumab-Resistant Breast Cancer Cells in-Vivo. Breast Cancer Research, 13, R46. http://dx.doi.org/10.1186/bcr2868

[12]   Oliveras-Ferraros, C., Vazquez-Martin, A., Martin-Castilló, B., Pérez-Martínez, M.C., Cufí, S., Del Barco, S., Bernado, L., Brunet, J., López-Bonet, E. and Menendez, J.A. (2010) Pathway-Focused Proteomic Signatures in HER2-Overex-pressing Breast Cancer with a Basal-Like Phenotype: New Insights into de Novo Resistance to Trastuzumab (Herceptin). International Journal of Oncology, 37, 669-678.

[13]   García-Sáenz, J.A., Martín, M., Calles, A., Bueno, C., Rodríguez, L., Bobokova, J., Custodio, A., Casado, A. and Díaz-Rubio, E. (2008) Bevacizumab in Combination with Metronomic Chemotherapy in Patients with Anthracycline and Taxane-Refractory Breast Cancer. Journal of Chemotherapy, 20, 632-639.
http://dx.doi.org/10.1179/joc.2008.20.5.632

[14]   Slamon, D.J., Leyland-Jone, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., Fleming, T., Eiermann, W., Wolter, J., and Pegram, M. (2001) Use of Chemotherapy plus Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpress HER2. The New England Journal of Medicine, 344, 786-792. http://dx.doi.org/10.1056/NEJM200103153441101

[15]   Harris, C.A., Ward, R.L., Dobbins, T.A., Drew, A.K. and Pearson, S. (2011) The Efficacy of HER2-Targeted Agents in Metastatic Breast Cancer: A Meta-Analysis. Annals of Oncology, 22, 1308-1317.
http://dx.doi.org/10.1093/annonc/mdq593

[16]   Coyne, C.P., Ross, M., Bailey, J. and Jones, T. (2009) Dual Potency Anti-HER2/neu and Anti-EGFR Anthracycline-Immunoconjugates in Chemotherapeutic-Resistant Mammary Carcinoma Combined with Cyclosporin-A and Verapamil P-Glycoprotein Inhibition. Journal of Drug Targeting, 17, 474-489.
http://dx.doi.org/10.1080/10611860903012802

[17]   Xu, B., Jiang, Z., Kim, S.B., Yu, S., Feng, J., Malzyner, A., Del Giglio, A., Chung, H.C., Shen, L.J. and Pen, D.L. (2011) Biweekly Gemcitabine-Paclitaxel, Gemcitabine-Carboplatin, or Gemcitabine-Cisplatin as First-Line Treatment in Metastatic Breast Cancer after Anthracycline Failure: A Phase II Randomized Selection Trial. Breast Cancer, 18, 203-212. http://dx.doi.org/10.1007/s12282-011-0260-y

[18]   Coyne, C.P., Jones, T. and Bear, R. (2012) Synthesis of Epirubicin-(C3-amide)-[anti-HER2/neu] Utilizing a UV-Photoactivated Epirubicin Intermediate. Cancer Biotherapy and Radiopharmaceuticals, 27, 41-55. http://dx.doi.org/10.1089/cbr.2011.1097

[19]   Coyne, C.P. Jones, T. and Bear, R. (2012) Synthesis of Gemcitabine-(C4-amide)-[Anti-HER2/neu] Utilizing a UV-Photoactivated Gemcitabine Intermediate: Cytotoxic Anti-Neoplastic Activity against Chemotherapeutic-Resistant Mammary Adenocarcinoma SKBr-3. Journal of Cancer Therapy, 3, 689-711. http://dx.doi.org/10.4236/jct.2012.325089

[20]   Kirstein, M.N., Hassan, I., Guire, D.E., Weller, D.R., Dagit, J.W., Fisher, J.E. and Remmel, R.P. (2006) High-Performance Liquid Chromatographic Method for the Determination of Gemcitabine and 2’,2’-Difluorodeoxyuridine in Plasma and Tissue Culture Media. Journal of Chromatography B, 835, 136-142. http://dx.doi.org/10.1016/j.jchromb.2006.03.023

[21]   Reichelova, V., Albertioni, F. and Liliemark, J. (1996) Determination of 2-Chloro-2’-deoxyadenosine Nucleotides in Leukemic Cells by Ion-Pair High-Performance Liquid Chromatography. Journal of Chromatography B Biomedical Applications, 682, 115-123.
http://dx.doi.org/10.1016/0378-4347(96)00048-5

[22]   Xu, L.C., Nakayama, M., Harada, K., Kuniyasu, A., Nakayama, H., Tomiguchi, S., Kojima, A., Takahashi, M., Ono, M., Arano, Y., Saji, H., Yao, Z., Sakahara, H., Konishi, J. and Imagawa, Y. (1999) Bis(hydroxamamide)-Based Bifunctional Chelating Agent for 99mTc Labeling of Polypeptides. Bioconjugate Chemistry, 10, 9-17. http://dx.doi.org/10.1021/bc980024j

[23]   Arano, Y., Uezono, T., Akizawa, H., Ono, M., Wakisaka, K., Nakayama, M., Sakahara, H., Konishi, J. and Yokoyama, A. (1996) Reassessment of Diethylenetriaminepentaacetic Acid (DTPA) as a Chelating Agent for Indium-111 Labeling of Polypeptides Using a Newly Synthesized Monoreactive DTPA Derivative. Journal of Medicinal Chemistry, 39, 3451-3460. http://dx.doi.org/10.1021/jm950949+

[24]   Coyne, C.P., Jones, T. and Pharr, T. (2011) Synthesis of a Covalent Gemcitabine-(carbamate)-[Anti-HER2/neu] Immunochemotherapeutic and Cytotoxic Anti-Neoplastic Activity against Chemothe- rapeutic-Resistant SKBr-3 Mammary Carcinoma. Bioorganic & Medicinal Chemistry, 19, 67-76. http://dx.doi.org/10.1016/j.bmc.2010.11.046

[25]   Coyne, C.P., Jones, T., Sygula, A., Bailey, J. and Pinchuk, L. (2011) Epirubicin-[anti-HER2/neu] Synthesized with an Epirubicin-(C13-imino)-EMCS Analog: Anti-Neoplastic Activity against Chemothe- rapeutic-Resistant SKBr-3 Mammary Carcinoma in Combination with Organic Selenium. Journal of Cancer Therapy, 2, 22-39. http://dx.doi.org/10.4236/jct.2011.21004

[26]   Beyer, U., Rothen-Rutishauser, B., Unger, C., Wunderli-Allenspach, H. and Kratz, F. (2001) Difference in the Intracellular Distribution of Acid-Sensitive Doxorubicin-Protein Conjugates in Comparison to Free and Liposomal-Formulated Doxorubicin as Shown by Confocal Microscopy. Pharmaceutical Research, 18, 29-38. http://dx.doi.org/10.1023/A:1011018525121

[27]   Di Stefano, G., Lanza, M., Kratz, F., Merina, L. and Fiume, L. (2004) A Novel Method for Coupling Doxorubicin to Lactosaminated Human Albumin by an Acid Sensitive Hydrazone Bond: Synthesis, Characterization and Preliminary Biological Properties of the Conjugate. European Journal of Pharmaceutical Sciences, 23, 393-397. http://dx.doi.org/10.1016/j.ejps.2004.09.005

[28]   Sinkule, J.A., Rosen, S.T. and Radosevich, J.A. (1991) Monoclonal Antibody 44-3A6 Doxorubicin Immunoconjugates: Comparative in-Vitro Anti-Tumor Efficacy of Different Conjugation Methods. Tumor Biology, 12, 198-206. http://dx.doi.org/10.1159/000217705

[29]   Pietras, R.J., Pegram, M.D., Finn, R.S., Maneval, D.A. and Slamon, D.J. (1998) Remission of Human Breast Cancer Xenografts on Therapy with Humanized Monoclonal Antibody to HER-2 Receptor and DNA-Reactive Drugs. Oncogene, 17, 2235-2249. http://dx.doi.org/10.1038/sj.onc.1202132

[30]   Marches, R. and Uhr, J.W. (2004) Enhancement of the p27Kip1-Mediated Antiproliferative Effect of Trastuzumab (Herceptin) on HER2-Overexpressing Tumor Cells. International Journal of Cancer, 112, 492-501. http://dx.doi.org/10.1002/ijc.20378

[31]   Sliwkowski, M.X., Lofgren, J.A., Lewis, G.D., Hotaling, T.E., Fendly, B.M. and Fox, J.A. (1999) Nonclinical Studies Addressing the Mechanism of Action of Trastuzumab (Herceptin). Seminars in Oncology, 26, 60-70.

[32]   Lin, N.U., Carey, L.A., Liu, M.C., Younger, J., Come, S.E., Ewend, M., Harris, G., Bullitt, E., Van den Abbeele, A.D., Henson, J.W., Li, X., Gelman, R., Burstein, H.J., Kasparian, E., Kirsch, D.G., Crawford, A., Hochberg, F. and Winer, E.P. (2008) Phase II Trial of Lapatinib for Brain Metastases in Patients with Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer. Journal of Clinical Oncology, 26, 1993-1999. http://dx.doi.org/10.1200/JCO.2007.12.3588

[33]   Cobleigh, M.A., Vogel, C.L., Tripathy, D., Robert, N.J., Scholl, S., Fehrenbacher, L., Wolter, J., Paton, V., Shak, S., Lieberman, G. and Slamon, D.J. (1999) Multinational Study of the Efficacy and Safety of Humanized Anti-HER2 Monoclonal Antibody in Women Who Have HER2-Overexpressing Metastatic Breast Cancer That Has Progressed after Chemotherapy for Metastatic Disease. Journal of Clinical Oncology, 17, 2639-2648.

[34]   Vogel, C.L., Cobleigh, M.A., Tripathy, D., Gutheil, J.C., Harris, L.N., Fehrenbacher, L., Slamon, D.J., Murphy, M., Novotny, W.F., Burchmore, M., Shak, S., Stewart, S.J. and Press, M. (2002) Efficacy and Safety of Trastuzumab as a Single Agent in First-Line Treatment of HER2-Overexpressing Metastatic Breast Cancer. Journal of Clinical Oncology, 20, 719-726. http://dx.doi.org/10.1200/JCO.20.3.719

[35]   Lewis Phillips, G.D., Li, G., Dugger, D.L., Crocker, L.M., Parsons, K.L., Mai, E., Blättler, W.A., Lambert, J.M., Chari, R.V, Lutz, R.J., Wong, W.L., Jacobson, F.S., Koeppen, H., Schwall, R.H., Kenkare-Mitra, S.R., Spencer, S.D. and Sliwkowski, M.X. (2008) Targeting HER2-Positive Breast Cancer with Trastuzumab-DM1, an Antibody-Cytotoxic Drug Conjugate. Cancer Research, 68, 9280-9290.
http://dx.doi.org/10.1158/0008-5472.CAN-08-1776

[36]   Kute, T.E., Savage, L., Stehle, J.R., Kim-Shapiro, J.W., Blanks, M.J., Wood, J. and Vaughn, J.P. (2009) Breast Tumor Cells Isolated from in Vitro Resistance to Trastuzumab Remain Sensitive to Trastu- zumab Anti-Tumor Effects in Vivo and to ADCC Killing. Cancer Immunology, Immunotherapy, 58, 1887-1896. http://dx.doi.org/10.1007/s00262-009-0700-0

[37]   Narayan, M., Wilken, J.A., Harris, L.N., Baron, A.T., Kimbler, K.D. and Maihle, N.J. (2009) Trastuzumab-Induced HER Reprogramming in “Resistant” Breast Carcinoma Cells. Cancer Research, 69, 2191-2194. http://dx.doi.org/10.1158/0008-5472.CAN-08-1056

[38]   Chen, F.L., Xia, W. and Spector, N.L. (2008) Acquired Resistance to Small Molecule ErbB2 Tyrosine Kinase Inhibitors. Cancer Research, 14, 6730-6734.

[39]   Nanda, R. (2007) Targeting the Human Epidermal Growth Factor Receptor 2 (HER2) in the Treatment of Breast Cancer: Recent Advances and Future Directions. Reviews on Recent Clinical Trials, 2, 111-116. http://dx.doi.org/10.2174/157488707780599375

[40]   Lammers, T., Subr, V., Ulbrich, K., Peschke, P., Huber, P.E., Hennink, W.E. and Storm, G. (2009) Simultaneous Delivery of Doxorubicin and Gemcitabine to Tumors in Vivo Using Prototypic Polymeric Drug Carriers. Biomaterials, 30, 3466-3475. http://dx.doi.org/10.1016/j.biomaterials.2009.02.040

[41]   Guo, P., Ma, J., Li, S., Guo, Z., Adams, A.L. and Gallo, J.M. (2001) Targeted Delivery of a Peripheral Benzodiazepine Receptor Ligand-Gemcitabine Conjugate to Brain Tumors in a Xenograft Model. Cancer Chemotherapy and Pharmacology, 48, 169-176. http://dx.doi.org/10.1007/s002800100284

[42]   Lagisetty, P., Vilekar, P. and Awasthi, V. (2009) Synthesis of Radiolabeled Cytarabine Conjugates. Bioorganic Medicinal Chemistry Letters, 19, 4764-4767. http://dx.doi.org/10.1016/j.bmcl.2009.06.056

[43]   Castelli, F., Sarpietro, M.G., Ceruti, M., Rocco, F. and Cattel, L. (2006) Characterization of Lipophilic Gemcitabine Prodrug-Liposomal Membrane Interaction by Differential Scanning Calorimetry. Molecular Pharmaceutics, 3, 737-744. http://dx.doi.org/10.1021/mp060059y

[44]   Guo, Z. and Gallo, J.M. (1999) Selective Protection of 2’,2’-Difluorodexoycytidine (Gemcitabine). The Journal of Organic Chemistry, 64, 8319-8322. http://dx.doi.org/10.1021/jo9911140

[45]   Mazuel, C., Grove, J., Gerin, G. and Keenan, K.P. (2003) HPLC-MS/MS Determination of a Peptide Conjugate Prodrug of Doxorubicin, and Its Active Metabolites, Leucine-Doxorubicin and Doxorubicin, in Dog and Rat Plasma. Journal of Pharmaceutical and Biomedical Analysis, 33, 1093-1102.
http://dx.doi.org/10.1016/S0731-7085(03)00434-5

[46]   Lau, A., Berube, G., Ford, C.H.J. and Gallant, M. (1995) Novel Doxorubicin-Monoclonal Anti-Carcinoembryonic Antigen Antibody Immunoconjugate Activity in-Vivo. Bioorganic and Medicinal Chemistry, 3, 1305-1312. http://dx.doi.org/10.1016/0968-0896(95)00126-2

[47]   Kruger, M., Beyer, U., Schumacher, P., Unger, C., Zahn, H. and Kratz, F. (1997) Synthesis and Stability of Four Maleimide Derivatives of the Anti-Cancer Drug Doxorubicin for the Preparation of Chemoimmunoconjugates. Chemical and Pharmaceutical Bulletin, 45, 399-401.
http://dx.doi.org/10.1248/cpb.45.399

[48]   Liang, J.F. and Yang, V.C. (2005) Synthesis of Doxorubicin-Peptide Conjugate with Multidrug Resistant Tumor Cell Killing Activity. Bioorganic Medicinal Chemistry Letters, 15, 5071-5075.
http://dx.doi.org/10.1016/j.bmcl.2005.07.087

[49]   Sirova, M., Strohalm, J., Subr, V., Plocova, D., Rossmann, P., Mrkvan, T., Ulbrich, K. and Rihova, B. (2007) Treatment with HPMA Copolymer-Based Doxorubicin Conjugate Containing Human Immunoglobulin Induces Long-Lasting Systemic Anti-Tumor Immunity in Mice. Cancer Immunology, Immunotherapy, 56, 35-47. http://dx.doi.org/10.1007/s00262-006-0168-0

[50]   Wong, B.K., Defeo-Jones, D., Jones, R.E., Garsky, V.M., Feng, D.M., Oliff, A., Chiba, M., Ellis, J.D. and Lin, J.H. (2001) PSA-Specific and Non-PSA-Specific Conversion of a PSA-Targeted Peptide Conjugate of Doxorubicin to Its Active Metabolite. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 29, 313-318.

[51]   Bidwell III, G.L., Davis, A.N., Fokt, I., Priebe, W. and Raucher, D. (2007) A Thermally Targeted Elastin-Like Polypeptide-Doxorubicin Conjugate Overcomes Drug Resistance. Investigational New Drugs, 25, 313-326. http://dx.doi.org/10.1007/s10637-007-9053-8

[52]   Ajaj, K.A., Graeser, R., Fichtner, I. and Kratz, F. (2009) In-Vitro and in-Vivo Study of an Albumin-Binding Prodrug of Doxorubicin That Is Cleaved by Cathepsin B. Cancer Chemotherapy and Pharmacology, 64, 413-418. http://dx.doi.org/10.1007/s00280-009-0942-8

[53]   Ryppa, C., Mann-Steinberg, H., Fichtner, I., Weber, H., Satchi-Fainaro, R., Biniossek, M.L. and Kratz, F. (2008) In-Vitro and in-Vivo Evaluation of Doxorubicin Conjugates with the Divalent Peptide E-[c(RGDfK)2] That Targets Integrin aVb3. Bioconjugate Chemistry, 19, 1414-1422.
http://dx.doi.org/10.1021/bc800117r

[54]   Ren, Y.H., Wei, D.Z. and Zhan, X.Y. (2005) Inhibition of P-Glycoprotein and Increasing of Drug-Sensitivity of a Human Carcinoma Cell Line (KB-A-1) by an Anti-Sense Oligodeoxynucleotide-Doxorubicin Conjugate in Vitro. Biotechnology and Applied Biochemistry, 41, 137-143.
http://dx.doi.org/10.1042/BA20040058

[55]   Ren, Y., Zhan, X., Wei, D. and Liu, J. (2004) In-Vitro Reversal MDR of Human Carcinoma Cell Line by an Antisense Oligodeoxynucleotide-Doxorubicin Conjugate. Biochemical Pharmacology, 58, 520-526.

[56]   Cao, N. and Feng, S.S. (2008) Doxorubicin Conjugated to D-alpha-tocopheryl Polyethylene Glycol 1000 Succinate (TPGS): Conjugation Chemistry, Characterization, in-Vitro and in-Vivo Evaluation. Biomaterials, 29, 3856-3865. http://dx.doi.org/10.1016/j.biomaterials.2008.05.016

[57]   Ali, S.M., Khan, A.R., Ahmad, M.U., Chen, P., Sheikh, S. and Ahmad, I. (2005) Synthesis and Biological Evaluation of Gemcitabine-Lipid Conjugate (NEO6002). Bioorganic Medicinal Chemistry Letters, 15, 2571-2574. http://dx.doi.org/10.1016/j.bmcl.2005.03.046

[58]   Chen, P., Chien, P.Y., Khan, A.R., Sheikh, S., Ali, S.M., Ahmad, M.U. and Ahmad, I. (2006) In-Vitro and in-Vivo Anti-Cancer Activity of a Novel Gemcitabine-Cardiolipin Conjugate. Anticancer Drugs, 17, 53-61. http://dx.doi.org/10.1097/01.cad.0000185182.80227.48

[59]   Alexander, R.L., Greene, B.T., Torti, S.V. and Kucera, G.L. (2005) A Novel Phospholipid Gemcitabine Conjugate Is Able to Bypass Three Drug-Resistance Mechanisms. Cancer Chemotherapy and Pharmacology, 56, 15-21. http://dx.doi.org/10.1007/s00280-004-0949-0

[60]   Kiew, L.V., Cheong, S.K., Sidik, K. and Chung, L.Y. (2010) Improved Plasma Stability and Sustained Release Profile of Gemcitabine via Polypeptide Conjugation. International Journal of Pharmaceutics, 391, 212-220. http://dx.doi.org/10.1016/j.ijpharm.2010.03.010

[61]   Alexander, R.L., Morris-Natschke, S.L., Ishaq, K.S., Fleming, R.A. and Kucera, G.L. (2003) Synthesis and Cytotoxic Activity of Two Novel 1-Dodecylthio-2-decyloxypropyl-3-phophatidic Acid Conjugates with Gemcitabine and Cytosine Arabinoside. Journal of Medicinal Chemistry, 46, 4205-4208.
http://dx.doi.org/10.1021/jm020571x

[62]   Alexander, R.L. and Kucera, G.L. (2005) Lipid Nucleoside Conjugates for the Treatment of Cancer. Current Pharmaceutical Design, 11, 1079-1089. http://dx.doi.org/10.2174/1381612053507602

[63]   Yang, H.M. and Reisfeld, R.A. (1988) Doxorubicin Conjugated with Monoclonal Antibody Directed to a Human Melanoma-Associated Proteoglycan Suppresses Growth of Established Tumor Xenografts in Nude Mice. Proceedings of the National Academy of Sciences of the United States of America, 85, 1189-1193. http://dx.doi.org/10.1073/pnas.85.4.1189

[64]   Dillman, R.O., Johnson, D.E., Ogden, J. and Beidler, D. (1989) Significance of Antigen, Drug, and Tumor Cell Targets in the Preclinical Evaluation of Doxorubicin, Daunorubicin, Methotrexate, and Mitomycin-C Monoclonal Antibody Immunoconjugates. Molecular Biotherapy, 1, 250-255.

[65]   Sivam, G.P., Martin, P.J., Reisfeld, R.A. and Mueller, B.M. (1995) Therapeutic Efficacy of a Doxorubicin Immunoconjugate in a Preclinical Model of Spontaneous Metastatic Human Melanoma. Cancer Research, 55, 2352-2356.

[66]   Johnson, D.A., Briggs, S.L., Gutowski, M.C. and Barton, R. (1995) Anti-Tumor Activity of CC49-Doxorubicin Immunoconjugates. Anticancer Research, 15, 1387-1393.

[67]   Stan, A.C., Radu, D.L., Casares, S., Bona, C.A. and Brumeanu, T.D. (1999) Antineoplastic Efficacy of Doxorubicin Enzymatically Assembled on Galactose Residues of a Monoclonal Antibody Specific for the Carcinoembryonic Antigen. Cancer Research, 59, 115-121.

[68]   Herbert, C., Norris, K. and Sauk, J.J. (2003) Targeting of Human Squamous Carcinomas by SPA470-Doxorubicin Immunoconjugates. Journal of Drug Targeting, 11, 101-107.
http://dx.doi.org/10.1080/1061186031000121478

[69]   Shih, L.B., Goldenberg, D.M., Xuan, H., Lu, H.W., Mattes, M.J. and Hall, T.C. (1994) Internalization of an Intact Doxorubicin Immunoconjugate. Cancer Immunology, Immunotherapy, 38, 92-98.
http://dx.doi.org/10.1007/BF01526203

[70]   Hansen, H.J., Ong, G.L. and Diril, H. (1996) Internalization and Catabolism of Radiolabeled Antibodies to the MHC Class-II Invariant Chain by B-Cell Lymphomas. Biochemical Journal, 320, 293-300.

[71]   Pimm, M.V., Paul, M.A., Ogumuyiwa, T. and Baldwin, R.W. (1988) Biodistribution and Tumour Localization of a Daunomycin-Monoclonal Antibody Conjugate in Nude Mice and Human Tumour Xenografts. Cancer Imrnunol Immunother, 27, 267-271.

[72]   Wang, F., Jiang, X., Yang, D.C., Elliott, R.L. and Head, J.F. (2000) Doxorubicin-Gallium-Transferrin Conjugate Overcomes Multidrug Resistance: Evidence for Drug Accumulation in the Nucleus of Drug Resistant MCF-7/ADR Cells. Anticancer Research, 20, 799-808.

[73]   Régina, A., Demeule, M., Ché, C., Lavallée, I., Poirier, J., Gabathuler, R., Béliveau, R. and Castaigne, J.P. (2008) Antitumour Activity of ANG1005, a Conjugate between Paclitaxel and the New Brain Delivery Vector Angiopep-2. British Journal of Pharmacology, 155, 185-197.
http://dx.doi.org/10.1038/bjp.2008.260

[74]   Asakura, T., Takahashi, N., Takada, K., Inoue, T. and Ohkawa, K. (1997) Drug Conjugate of Doxorubicin with Glutathione Is a Potent Reverser of Multidrug Resistance in Rat Hepatoma Cells. Anticancer Drugs, 8, 199-203. http://dx.doi.org/10.1097/00001813-199702000-00011

[75]   Mazel, M., Clair, P., Rousselle, C., Vidal, P., Scherrmann, J.M. Mathieu, D. and Temsamani, J. (2001) Doxorubicin-Peptide Conjugates Overcome Multidrug Resistance. Anticancer Drugs, 12, 107-116.
http://dx.doi.org/10.1097/00001813-200102000-00003

[76]   Lam, W., Leung, C.H., Chan, H.L. and Fong, W.F. (2000) Toxicity and DNA Binding of Dextran-Doxorubicin Conjugates in Multidrug-Resistant KB-V1 Cells: Optimization of Dextran Size. Anticancer Drugs, 11, 377-384. http://dx.doi.org/10.1097/00001813-200006000-00008

[77]   Dubikovskaya, E.A., Thorne, S.H., Pillow, T.H., Contag, C.H. and Wender, P.A. (2008) Overcoming Multidrug Resistance of Small-Molecule Therapeutics through Conjugation with Releasable Octaarginine Transporters. Proceedings of the National Academy of Sciences of the United States of America, 105, 12128-12133. http://dx.doi.org/10.1073/pnas.0805374105

[78]   Minko, T., Kopecková, P., Pzharov, V. and Kopecek, J. (1998) HPMA Copolymer Bound Adriamycin Overcomes MDR1 Gene Encoded Resistance in a Human Ovarian Carcinoma Cell Line. Journal of Controlled Release, 54, 223-233. http://dx.doi.org/10.1016/S0168-3659(98)00009-1

[79]   Szwed, M., Kania, K.D. and Jozwiak, Z. (2014) Relationship between Therapeutic Efficacy of Doxorubicin-Transferrin Conjugate and Expression of P-Glycoprotein in Chronic Erythromyeloblastoid Leukemia Cells Sensitive and Resistant to Doxorubicin. Cellular Oncology, 37, 421-428.
http://dx.doi.org/10.1007/s13402-014-0205-5

[80]   Guillemard, V. and Uri Saragovi, H. (2004) Prodrug Chemotherapeutics Bypass P-Glycoprotein Resistance and Kill Tumors in Vivo with High Efficacy and Target-Dependent Selectivity. Oncogene, 23, 3613-3621. http://dx.doi.org/10.1038/sj.onc.1207463

[81]   Liu, J.H., Cao, L., Luo, P.G., Yang, S.T., Lu, F., Wang, H., Meziani, M.J., Haque, S.A., Liu, Y., Lacher, S. and Sun, Y.P. (2010) Fullerene-Conjugated Doxorubicin in Cells. ACS Applied Materials Interfaces, 2, 1384-1389. http://dx.doi.org/10.1021/am100037y

[82]   Widakowich, C., Dinh, P., de Azambuja, E., Awada, A. and Piccart-Gebhart, M. (2008) HER-2 Positive Breast Cancer: What Else beyond Trastuzumab-Based Therapy? Anti-Cancer Agents in Medicinal Chemistry, 8, 488-496. http://dx.doi.org/10.2174/187152008784533062

[83]   Medina, P.J. and Goodin, S. (2008) Lapatinib: A Dual Inhibitor of Human Epidermal Growth Factor Receptor Tyrosine Kinases. Clinical Therapeutics, 30, 1426-1447.
http://dx.doi.org/10.1016/j.clinthera.2008.08.008

[84]   Cameron, D.A. and Stein, S. (2008) Drug Insight: Intracellular Inhibitors of HER2—Clinical Development of Lapatinib in Breast Cancer. Nature Clinical Practice Oncology, 5, 512-520.
http://dx.doi.org/10.1038/ncponc1156

[85]   Gonzalez-Angulo, A.M., Morales-Vasquez, F. and Hortobagyi, G.N. (2007) Overview of Resistance to Systemic Therapy in Patients with Breast Cancer. Advances in Experimental Medicine and Biology, 608, 1-22. http://dx.doi.org/10.1007/978-0-387-74039-3_1

[86]   Shen, H., Lee, F.Y. and Gan, J. (2011) Ixabepilone, a Novel Microtubule-Targeting Agent for Breast Cancer, Is a Substrate for P-Glycoprotein (P-gp/MDR1/ABCB1) but Not Breast Cancer Resistance Protein (BCRP/ABCG2). Journal of Pharmacology and Experimental Therapeutics, 337, 423-432.
http://dx.doi.org/10.1124/jpet.110.175604

[87]   Liu, F., Liu, S., He, S., Xie, Z., Zu, X. and Jiang, Y. (2010) Survivin Transcription Is Associated with P-Glycoprotein/ MDR1 Overexpression in the Multidrug Resistance of MCF-7 Breast Cancer Cells. Oncology Reports, 23, 1469-1475.

[88]   Patwardhan, G., Gupta, V., Huang, J., Gu, X. and Liu, Y.Y. (2010) Direct Assessment of P-Glycoprotein Efflux to Determine Tumor Response to Chemotherapy. Biochemical Pharmacology, 80, 72-79.
http://dx.doi.org/10.1016/j.bcp.2010.03.010

[89]   Pasquier, J., Magal, P., Boulangé-Lecomte, C., Webb, G. and Foll, F. (2011) Consequences of Cell-to-Cell P-Glycoprotein Transfer on Acquired Multidrug Resistance in Breast Cancer: A Cell Population Dynamics Model. Biology Direct, 6, 5. http://dx.doi.org/10.1186/1745-6150-6-5

[90]   Chekhun, V.F., Zhylchuk, V.E., Lukyanova, N.Y., Vorontsova, A.L. and Kudryavets, Y.I. (2009) Expression of Drug Resistance Proteins in Triple-Receptor-Negative Tumors as the Basis of Individualized Therapy of the Breast Cancer Patients. Experimental Oncology, 31, 123-124.

[91]   Slamon, D.J., Clark, G.M. and Wong, S.G. (1987) Human Breast Cancer: Correlation of Relapse and Survival with Amplification of the HER-2/neu Oncogene. Science, 235, 177-182.
http://dx.doi.org/10.1126/science.3798106

[92]   Loew, S., Schmidt, U., Unterberg, A. and Halatsch, M.E. (2009) The Epidermal Growth Factor Receptor as a Therapeutic Target in Glioblastoma Multiforme and Other Malignant Neoplasms. Anti-Cancer Agents in Medicinal Chemistry, 9, 703-715. http://dx.doi.org/10.2174/187152009788680019

[93]   Gupta, P., Goldenberg, D.M., Rossi, E.A., Cardillo, T.M., Byrd, J.C., Muthusamy, N., Furman, R.R. and Chang, C.H. (2012) Dual-Targeting Immunotherapy of Lymphoma: Potent Cytotoxicity of Anti-CD20/CD74 Bispecific Antibodies in Mantle Cell and Other Lymphomas. Blood, 119, 3767-3778.
http://dx.doi.org/10.1182/blood-2011-09-381988

[94]   Alinari, L., Yu, B., Christian, B.A., Yan, F., Shin, J., Lapalombella, R., Hertlein, E., Lustberg, M.E., Quinion, C., Zhang, X., Lozanski, G., Muthusamy, N., Prætorius-Ibba, M., O’Connor, O.A., Goldenberg, D.M., Byrd, J.C., Blum, K.A. and Baiocchi, R.A. (2011) Combination Anti-CD74 (Milatuzumab) and Anti-CD20 (Rituximab) Monoclonal Antibody Therapy Has in Vitro and in Vivo Activity in Mantle Cell Lymphoma. Blood, 117, 4530-4541. http://dx.doi.org/10.1182/blood-2010-08-303354

[95]   Pegram, M.D., Lopez, A., Konecny, G. and Slamon, D.J. (2000) Trastuzumab and Chemotherapeutics: Drug Interactions and Synergies. Seminars in Oncology, 27, 21-25, 92-100.

[96]   Slamon, D. and Pegram, M. (2001) Rationale for Trastuzumab (Herceptin) in Adjuvant Breast Cancer Trials. Seminars in Oncology, 28, 13-19. http://dx.doi.org/10.1016/S0093-7754(01)90188-5

[97]   Jin, R., Moreira Teixeira, L.S., Krouwels, A., Dijkstra, P.J., van Blitterswijk, C.A., Karperien, M. and Feijen, J. (2010) Synthesis and Characterization of Hyaluronic Acid-Poly(ethylene glycol) Hydrogels via Michael Addition: An Injectable Biomaterial for Cartilage Repair. Acta Biomaterialia, 6, 1968-1977.
http://dx.doi.org/10.1016/j.actbio.2009.12.024

[98]   Fry, A.K., Schilke, K.F., McGuire, J. and Bird, K.E. (2010) Synthesis and Anticoagulant Activity of Heparin Immobilized “End-On” to Polystyrene Microspheres Coated with End-Group Activated Polyethylene Oxide. Journal of Biomedical Materials Research Part B, 94, 187-195.

[99]   Winer, E.P. and Burstein, H.J. (2001) New Combinations with Herceptin in Metastatic Breast Cancer. Oncology, 61, 50-57. http://dx.doi.org/10.1159/000055402

[100]   Kim, S., Prichard, C.N., Younes, M.N., Yazici, Y.D., Jasser, S.A., Bekele, B.N. and Myers, J.N. (2006) Cetuximab and Irinotecan Interact Synergistically to Inhibit the Growth of Orthotopic Anaplastic Thyroid Carcinoma Xenografts in Nude Mice. Clinical Cancer Research, 12, 600-607. ,
http://dx.doi.org/10.1158/1078-0432.CCR-05-1325

[101]   Landriscina, M., Maddalena, F., Fabiano, A., Piscazzi, A., La Macchia, O. and Cignarelli, M. (2010) Erlotinib Enhances the Proapoptotic Activity of Cytotoxic Agents and Synergizes with Paclitaxel in Poorly-Differentiated Thyroid Carcinoma Cells. Anticancer Research, 30, 473-480.

[102]   Ciardiello, F., Bianco, R., Damiano, V., De Lorenzo, S., Pepe, S., De Placido, S., Fan, Z., Mendelsohn, J., Bianco, A., and Tortora, G. (1999) Antitumor Activity of Sequential Treatment with Topotecan and Anti-Epidermal Growth Factor Receptor Monoclonal Antibody C225. Clinical Cancer Research, 5, 909-916.

[103]   Lynn, K.D., Udugamasooriya, D.G., Roland, C.L., Castrillon, D.H., Kodadek, T.J. and Brekken, R.A. (2010) GU81, a VEGFR2 Antagonist Peptoid, Enhances the Anti-Tumor Activity of Doxorubicin in the Murine MMTV-PyMT Transgenic Model of Breast Cancer. BMC Cancer, 10, 397.
http://dx.doi.org/10.1186/1471-2407-10-397

[104]   Zhang, L., Yu, D., Hicklin, D.J., Hannay, J.A., Ellis, L.M. and Pollock, R.E. (2002) Combined Anti-Fetal Liver Kinase 1 Monoclonal Antibody (Anti-VEGFR) and Continuous Low-Dose Doxorubicin Inhibits Angiogenesis and Growth of Human Soft Tissue Sarcoma Xenografts by Induction of Endothelial Cell Apoptosis. Cancer Research, 62, 2034-2042.

[105]   Coyne, C.P., Fenwick, B.W. and Ainsworth, J. (1997) Anti-Neoplastic Activity of Chemotherapeutic “Loaded” Neutrophils against Human Mammary Carcinoma. Biotherapy, 10, 145-159.
http://dx.doi.org/10.1007/BF02678542

[106]   Shen, W.C. and Ryser, H.J. (1981) Cis-Aconityl Spacer between Daunomycin and Macromolecular Carriers: A Model of pH-Sensitive Linkage Releasing Drug from a Lysosomotrophic Conjugates. Biochemical and Biophysical Research Communications, 102, 1048-1054.
http://dx.doi.org/10.1016/0006-291X(81)91644-2

[107]   Zhang, Y., Wang, N., Li, N., Liu, T. and Dong, Z. (1992) The Antitumor Effect of Adriamycin Conjugated with Monoclonal Antibody against Gastric Cancer in-Vitro and in-Vivo. Acta Pharmaceutica Sinica, 27, 325-330.

[108]   Aboud-Pirak, E., Hurwitz, E., Bellot, F., Schlessinger, J. and Sela, M. (1989) Inhibition of Human Tumor Growth in Nude Mice by a Conjugate of Doxorubicin with Monoclonal Antibodies to Epidermal Growth Factor Receptor. Proceedings of the National Academy of Sciences of the United States of America, 86, 3778-3781. http://dx.doi.org/10.1073/pnas.86.10.3778

[109]   Michalski, C.W., Erkan, M., Sauliunaite, D., Giese, T., Stratmann, R., Sartori, C., Giese, N.A., Friess, H. and Kleeff, J. (2008) Ex Vivo Chemosensitivity Testing and Gene Expression Profiling Predict Response towards Adjuvant Gemcitabine Treatment in Pancreatic Cancer. British Journal of Cancer, 99, 760-767. http://dx.doi.org/10.1038/sj.bjc.6604528

[110]   Hoang, T., Kim, K., Jaslowski, A., Koch, P., Beatty, P., McGovern, J., Quisumbing, M., Shapiro, G., Witte, R. and Schiller, J.H. (2003) Phase II Study of Second-Line Gemcitabine in Sensitive or Refractory Small Cell Lung Cancer. Lung Cancer, 42, 97-102. http://dx.doi.org/10.1016/S0169-5002(03)00273-3

[111]   Bierau, J., van Gennip, A.H., Leen, R., Meinsma, R., Caron, H.N. and van Kuilenburg, A.B. (2006) Cyclopentenyl Cytosine-Induced Activation of Deoxycytidine Kinase Increases Gemcitabine Anabolism and Cytotoxicity in Neuroblastoma. Cancer Chemotherapy and Pharmacology, 57, 105-113.
http://dx.doi.org/10.1007/s00280-005-0005-8

[112]   Santini, V., D’Ippolito, G., Bernabei, P.A., Zoccolante, A., Ermini, A. and Rossi-Ferrini, P. (1996) Effects of Fludarabine and Gemcitabine on Human Acute Myeloid Leukemia Cell Line HL 60: Direct Comparison of Cytotoxicity and Cellular Ara-C Uptake Enhancement. Leukemia Research, 20, 37-45.
http://dx.doi.org/10.1016/0145-2126(95)00106-9

[113]   Yang, H.M. and Reisfeld, R.A. (1988) Pharmacokinetics and Mechanism of Action of a Doxorubicin-Monoclonal Antibody 9.2.27 Conjugate Directed to a Human Melanoma Proteoglycan, Preview. Journal of the National Cancer Institute, 80, 1154-1159. http://dx.doi.org/10.1093/jnci/80.14.1154

[114]   Lutsenko, S.V., Feldman, N.B. and Severin, S.E. (2002) Cytotoxic and Antitumor Activities of Doxorubicin Conjugates with the Epidermal Growth Factor and Its Receptor-Binding Fragment. Journal of Drug Targeting, 10, 567-571. http://dx.doi.org/10.1080/1061186021000038058

[115]   Mueller, H., Kassack, M.U. and Wiese, M. (2004) Comparison of the Usefulness of the MTT, ATP and Calcein Assays to Predict the Potency of Cytotoxic Agents in Various Human Cancer Cell Lines. Journal of Biomolecular Screening, 9, 506-515. http://dx.doi.org/10.1177/1087057104265386

[116]   Ulukaya, E., Ozdikicioglu, F., Oral, A.Y. and Dermirci, M. (2008) The MTT Assay Yields a Relatively Lower Result of Growth Inhibition than the ATP Assay Depending on the Chemotherapeutic Drug Tested. Toxicology in Vitro, 22, 232-239. http://dx.doi.org/10.1016/j.tiv.2007.08.006

[117]   Varache-Lembège, M., Larrouture, S., Montaudon, D., Robert, J. and Nuhrich, A. (2008) Synthesis and Antiproliferative Activity of Aryl and Heteroaryl-Hydrazones Derived from Xanthone Carbaldehydes. European Journal of Medicinal Chemistry, 43, 1336-1343.
http://dx.doi.org/10.1016/j.ejmech.2007.09.003

[118]   Kars, M.D., Iseri, O.D., Gunduz, U. and Molnar, J. (2008) Reversal of Multidrug Resistance by Synthetic and Natural Compounds in Drug-Resistant MCF-7 Cell Lines. Chemotherapy, 54, 194-200.
http://dx.doi.org/10.1159/000140462

[119]   Huang, H., Pierstorff, E., Osawa, E. and Ho, D. (2007) Active Nanodiamond Hydrogels for Chemotherapeutic Delivery. Nano Letters, 7, 3305-3314. http://dx.doi.org/10.1021/nl071521o

[120]   Dery, M.C., Van Themsche, C., Provencher, D., Mes-Masson, A.M. and Asselin, E. (2007) Characterization of EN-1078D, a Poorly Differentiated Human Endometrial Carcinoma Cell Line: A Novel Tool to Study Endometrial Invasion in-Vitro. Reproductive Biology and Endocrinology, 5, 38-39.
http://dx.doi.org/10.1186/1477-7827-5-38

[121]   Spee, B., Jonkers, M.D., Arends, B., Rutteman, G.R., Rothuizen, J. and Penning, L.C. (2006) Specific Down-Regulation of XIAP with RNA Interference Enhances the Sensitivity of Canine Tumor Cell-Lines to TRAIL and Doxorubicin. Molecular Cancer, 5, 34. http://dx.doi.org/10.1186/1476-4598-5-34

[122]   Denora, N., Laquintana, V., Trapani, A., Lopedota, A., Latrofa, A., Gallo, J.M. and Trapani, G. (2010) Translocator Protein (TSPO) Ligand-Ara-C (Cytarabine) Conjugates as a Strategy to Deliver Antineoplastic Drugs and to Enhance Drug Clinical Potential. Molecular Pharmaceutics, 7, 2255-2269. http://dx.doi.org/10.1021/mp100235w

[123]   Popovic, M., Kolarovic, J., Mikov, M., Trivic, S. and Kaurinovic, B. (2007) Anthracycline-Based Combined Chemotherapy in the Mouse Model. European Journal of Drug Metabolism and Pharmacokinetics, 32, 101-108. http://dx.doi.org/10.1007/BF03190998

[124]   Vadgama, J.V., Wu, Y., Shen, D., Hsia, S. and Block, J. (2000) Effect of Selenium in Combination with Adriamycin or Taxol on Several Different Cancer Cells. Anticancer Research, 20, 1391-1414.

[125]   Li, S., Zhou, Y., Wang, R., Zhang, H., Dong, Y. and Ip, C. (2007) Selenium Sensitizes MCF-7 Breast Cancer Cells to Doxorubicin-Induced Apoptosis through Modulation of Phospho-Akt and Its Downstream Substrates. Molecular Cancer Therapeutics, 6, 1031-1038.
http://dx.doi.org/10.1158/1535-7163.MCT-06-0643

[126]   Li, S., Zhou, Y., Dong, Y. and Ip, C. (2007) Doxorubicin and Selenium Cooperative Induce Fas Signaling in the Absence of Fas/Fas Ligand Interaction. Anticancer Research, 27, 3075-3082.

[127]   Cao, S., Durrani, F.A. and Rustum, Y.M. (2004) Selective Modulation of the Therapeutic Efficacy of Anticancer Drugs by Selenium Containing Compounds against Human Tumor Xenografts. Clinical Cancer Research, 10, 2561-2569. http://dx.doi.org/10.1158/1078-0432.CCR-03-0268

[128]   Tan, L., Jia, X., Jiang, X., Zhang, Y., Tang, H., Yao, S. and Xie, Q. (2009) In-Vitro Study on the Individual and Synergistic Cytotoxicity of Adriamycin and Selenium Nanoparticles against Bel7402 Cells with a Quartz Crystal Microbalance. Biosensors and Bioelectronics, 24, 2268-2272.
http://dx.doi.org/10.1016/j.bios.2008.10.030

[129]   Chintala, S., Tóth, K., Cao, S., Durrani, F.A., Vaughan, M.M., Jensen, R.L. and Rustum, Y.M. (2010) Se-Methylse-lenocysteine Sensitizes Hypoxic Tumor Cells to Irinotecan by Targeting Hypoxia-Inducible Factor 1α. Cancer Chemotherapy and Pharmacology, 66, 899-911.
http://dx.doi.org/10.1007/s00280-009-1238-8

[130]   Yin, M.B., Li, Z.R., Tóth, K., Cao, S., Durrani, F.A., Hapke, G., Bhattacharya, A., Azrak, R.G., Frank, C. and Rustum, Y.M. (2006) Potentiation of Irinotecan Sensitivity by Se-Methylselenocysteine in an in Vivo Tumor Model Is Associated with Down-Regulation of Cyclooxygenase-2, Inducible Nitric Oxide Synthase, and Hypoxia-Inducible Factor 1α Expression, Resulting in Reduced Angiogenesis. Oncogene, 25, 2509-2519. http://dx.doi.org/10.1038/sj.onc.1209073

[131]   Azrak, R.G., Cao, S., Pendyala, L., Durrani, F.A., Fakih, M., Combs Jr., G.F., Prey, J., Smith, P.F. and Rustum, Y.M. (2007) Efficacy of Increasing the Therapeutic Index of Irinotecan, Plasma and Tissue Selenium Concentrations Is Methylselenocysteine Dose Dependent. Biochemical Pharmacology, 73, 1280-1287. http://dx.doi.org/10.1016/j.bcp.2006.12.020

[132]   Azrak, R.G., Frank, C.L., Ling, X., Slocum, H.K., Li, F., Foster, B.A. and Rustum, Y.M. (2006) The Mechanism of Methylselenocysteine and Docetaxel Synergistic Activity in Prostate Cancer Cells. Molecular Cancer Therapeutics, 5, 2540-2548. http://dx.doi.org/10.1158/1535-7163.MCT-05-0546

[133]   Li, Z., Carrier, L., Belame, A., Thiyagarajah, A., Salvo, V.A., Burow, M.E. and Rowan, B.G. (2009) Combination of Methylselenocysteine with Tamoxifen Inhibits MCF-7 Breast Cancer Xenografts in Nude Mice through Elevated Apoptosis and Reduced Angiogenesis. Breast Cancer Research and Treatment, 118, 33-43. http://dx.doi.org/10.1007/s10549-008-0216-x

[134]   Juliger, S., Goenaga-Infante, H., Lister, T.A., Fitzgibbon, J. and Joel, S.P. (2007) Chemosensitization of B-Cell Lymphomas by Methylseleninic Acid Involves Nuclear Factor-kB Inhibition and the Rapid Generation of Other Selenium Species. Cancer Research, 67, 10984-10992.
http://dx.doi.org/10.1158/0008-5472.CAN-07-0519

[135]   Cho, H., Thomas, S., Golden, E., Gaffney, K., Hofman, F., Chen, T., Louie, S., Petasis, N. and Schönthal, A. (2009) Enhanced Killing of Chemo-Resistant Breast Cancer Cells via Controlled Aggravation of ER Stress. Cancer Letters, 282, 87-97.
http://dx.doi.org/10.1016/j.canlet.2009.03.007

[136]   van Wijngaarden, J., van Beek, E., van Rossum, G., van der Bent, C., Hoekman, K., van der Pluijm, G., van der Pol, M.A., Broxterman, H.J., van Hinsbergh, V.W. and Löwik, C.W. (2007) Celecoxib Enhances Doxorubicin-Induced Cytotoxicity in MDA-MB231 Cells by NF-kB -Mediated Increase of Intracellular Doxorubicin Accumulation. European Journal of Cancer, 43, 433-442.
http://dx.doi.org/10.1016/j.ejca.2006.09.010

[137]   Hashitani, S., Urade, M., Nishimura, N., Maeda, T., Takaoka, K., Noguchi, K. and Sakurai, K. (2003) Apoptosis Induction and Enhancement of Cytotoxicity of Anticancer Drugs by Celecoxib, a Selective Cyclooxygenase-2 Inhibitor, in Human Head and Neck Carcinoma Cell Lines. International Journal of Oncology, 23, 665-672.

[138]   Roy, K.R., Reddy, G.V., Maitreyi, L., Agarwal, S., Achari, C., Vali, S. and Reddanna, P. (2010) Celecoxib Inhibits MDR1 Expression through COX-2-Dependent Mechanism in Human Hepatocellular Carcinoma (HepG2) Cell Line. Cancer Chemotherapy and Pharmacology, 65, 903-911.
http://dx.doi.org/10.1007/s00280-009-1097-3

[139]   Awara, W.M., El-Sisi, A.E., El-Sayad, M.E. and Goda, A.E. (2004) The Potential Role of Cyclooxygenase-2 Inhibitors in the Treatment of Experimentally-Induced Mammary Tumour: Does Celecoxib Enhance the Anti-Tumour Activity of Doxorubicin? Pharmacological Research, 50, 487-498. http://dx.doi.org/10.1016/j.phrs.2004.04.002

[140]   Jonsson-Videsater, K., Jborkhem-Bergman, L., Hossain, A., Soderberg, A., Eriksson, L.C., Paul, C., Rosen, A. and Bjornstedt, M. (2004) Selenite-Induced Apoptosis in Doxorubicin-Resistant Cells and Effects on the Thioredoxin System. Biochemical Pharmacology, 67, 513-522.
http://dx.doi.org/10.1016/j.bcp.2003.09.021

[141]   Guan, L., Han, B., Li, J., Li, Z., Huang, F., Yang, Y. and Xu, C. (2009) Exposure of Human Leukemia NB4 Cells to Increasing Concentrations of Selenite Switches the Signaling from Pro-Survival to Pro-Apoptosis. Annals of Hematology, 88, 733-742. http://dx.doi.org/10.1007/s00277-008-0676-4

[142]   Suchocki, P., Misiewicz, I., Skupinska, K., Waclawek, K., Fijalek, Z. and Kasprzycka-Guttman, T. (2007) The Activity of Selol in Multidrug-Resistant and Sensitive Human Leukemia Cells. Oncology Reports, 18, 893-899.

[143]   Pighetti, G.M., Eskew, M.L., Reddy, C.C. and Sordillo, L.M. (1998) Selenium and Vitamin E Deficiency Impair Transferrin Receptor Internalization but Not IL-2, IL-2 Receptor, or Transferrin Receptor Expression. Journal of Leukocyte Biology, 63, 131-137.

 
 
Top