Effect of Slip Velocity on Blood Flow through a Catheterized Artery

References

[1] J. H. Forestor and D. F. Young, “Flow through a Converging Diverging Tube and Its Implications in Occlusive Vascular Disease,” Journal of Biomechanics, Vol. 3, No. 2, 1970, pp. 297-316. doi:10.1016/0021-9290(70)90031-X

[2] D. A. McDonald, “On Steady Flow through Modeled Vascular Stenosis,” Journal of Biomechanics, Vol. 12, No. 1, 1979, pp. 13-20.

[3] D. F. Young and F. Y. Tsai, “Flow Characteristics in Model of Arterial Stenosis—Steady Flow,” Journal of Biomechanics, Vol. 6, No. 4, 1973, pp. 395-410. doi:10.1016/0021-9290(73)90099-7

[4] D. F. Young, “Effects of a Time-Dependent Stenosis of Flow through a Tube,” Journal of Engineering for Industry, Vol. 90, No. 1, 1968, pp. 248-254.

[5] A. S. Ahmed and D. P. Giddens, “Velocity Measurements in Steady Flow through Axisymmetric Stenosis at Moderate Reynolds Number,” Journal of Biomechanics, Vol. 16, No. 7, 1983, pp. 505-516. doi:10.1016/0021-9290(83)90065-9

[6] M. Siouffi, V. Depleno and R. Pelissier, “Experimental Analysis of Unsteady Flow through Stenosis,” Journal of Biomechanics, Vol. 31, No. 1, 1998, pp. 11-19.

[7] H. Liu and T. Yamaguchi, “Waveform Dependence of Pulsatile Flow in a Stenosed Channel,” Journal of Biomechanical Engineering Transactions ASME, Vol. 123, No. 1, 2001, p. 88.

[8] S. Chakravarty, P. K. Mandal and A. Mandal, “Mathematical Model of Pulsatile Blood Flow in a Distensible Aortic Bifurcation Subject to Body Acceleration,” International Journal of Engineering Sciences, Vol. 38, No. 2, 2000, pp. 215-238. doi:10.1016/S0020-7225(99)00022-1

[9] J. M. Siegel and C. P. Markou, “A Scaling Law for Wall Shear Rate through an Arterial Stenosis,” Journal of Biomechanical Engineering Transactions ASME, Vol. 116, No. 1, 1996, pp. 446-451.

[10] S. U. Siddiqui, N. K. Verma and R. S. Gupta, “A Mathematical Model for Pulsatile Flow of Herschel Bulkley Fluid through Stenosed Arteries,” Journal of Science and Technology, Vol. 5, No. 4, 2010, pp. 49-66.

[11] S. U. Siddiqui, N. K. Verma, S. Mishra and R. S. Gupta, “Mathematical Modelling of Pulsatile Flow of Casson’s Fluid in Arterial Stenosis,” Applied Mathematics and Computation, Vol. 210, No. 1, 2009a, pp. 1-10. doi:10.1016/j.amc.2007.05.070

[12] S. U. Siddiqui, N. K. Verma, S. Mishra and R. S. Gupta, “Mathematical Modelling of Pulsatile Flow of Blood through a Time Dependent Stenotic Blood Vessel,” International Journal of Physical Sciences, Vol. 21, No.1, 2009b, pp. 241-248.

[13] I. Takuji and L. F. R. Guimaraes, “Effect of Non-Newtonian Property of Blood on Flow through a Stenosed Tube,” Fluid Dynamics Research, Vol. 22, No. 5, 1998, pp. 251-264. doi:10.1016/S0169-5983(97)00041-5

[14] R. Roos and P. S. Lykoudis, “The Fluid Mechanics of the Ureter with an Inserted Catheter,” Journal of Fluid Mechanics, Vol. 46, No. 4, 1971, pp. 625-630. doi:10.1017/S0022112071000752

[15] D. A. McDonald, “Pulsatile Flow in a Catheterized Artery,” Journal of Biomechanics, Vol. 19, No. 3, 1986, pp. 239-249. doi:10.1016/0021-9290(86)90156-9

[16] G. T. Karahalios, “Some Possible Effects of a Catheter on the Arterial Wall,” Medical Physiology, Vol. 17, No. 5, 1990, pp. 922-925. doi:10.1118/1.596448

[17] R. K. Dash, G. Jayaraman and K. N. Mehta, “Estimation of Increased Flow Resistance in a Narrow Catheterized Artery—A Theoretical Model,” Journal of Biomechanics, Vol. 29, No. 7, 1996, pp. 917-930. doi:10.1016/0021-9290(95)00153-0