Back
 MRC  Vol.4 No.1 , January 2015
Green and Efficient Oxidation of Octanol by Iron Oxide Nanoparticles Supported on Activated Carbon
Abstract: Iron oxide nanoparticles were synthesized by precipitation method and supported on activated carbon. The catalyst thus obtained was characterized by various physicochemical techniques, and used for the liquid phase dehydrogenation/oxidation of octanol in a batch reactor at various temperatures in the range 30 °C - 60 °C. Maximum conversion of octanol to octanal was attained at 60°C in 30 min. However, with longer reaction time, the selectivity of the catalyst was found to change in favor of octene as a product. The catalyst could be recovered and reused multiple times without any decline in its catalytic performance.
Cite this paper: Sadiq, M. , Aman, R. , Hussain, S. , Zia, M. , Rahman, N. and Saeed, M. (2015) Green and Efficient Oxidation of Octanol by Iron Oxide Nanoparticles Supported on Activated Carbon. Modern Research in Catalysis, 4, 28-35. doi: 10.4236/mrc.2015.41004.
References

[1]   Parshall, G. and Ittel, S., Eds. (1992) Homogeneous Catalysis. 2nd Edition, John Wiley & Sons, Inc., Hoboken.

[2]   Cornils, B. and Herrmann, W., Eds. (1996) Applied Homogeneous Catalysis with Organometallic Compounds. Vol. 1, VCH, Chapter 2.4.
http://dx.doi.org/10.1002/9783527619351

[3]   Anastas, P. and Warner, J. (1997) Green Cemistry: Theory and Practice. Oxford University Press, Oxford.

[4]   Puzari, A. and Baruah, J. (2002) Organic Oxidative Reactions Mediated by Copper. Journal of Molecular Catalysis A: Chemical, 187, 149-162.
http://dx.doi.org/10.1016/S1381-1169(02)00273-X

[5]   Gates, B. (1992) Catalytic Chemistry. John Wiley & Sons, Inc., Hoboken.

[6]   Santhanaraj, D., Suresh, C., Vijayan, P., Venkatathri, N. and Shanthi, K. (2010) Mn-MCM-41 Molecular Sieves: A Selective Gas-Phase Cyclohexanol Oxidation Catalyst. Reaction Kinetics and Catalysis Letters, 99, 439-346

[7]   Jasinska, E., Krzyzynska, B. and Kozlowski, M. (2008) Activated Carbon Modified with Different Chemical Agents as a Catalyst in the Dehydrogenation of Isopropanol. Catalysis Letters, 125, 145-153.
http://dx.doi.org/10.1007/s10562-008-9536-z

[8]   Ilyas, M. and Ikramullah (2004) Dehydrogenation of Cyclohexanol to Cyclohexanone Catalysed by Y2O3/ZrO2: Activation Energy. Catalysis Communications, 5, 1-4.
http://dx.doi.org/10.1016/j.catcom.2003.10.010

[9]   Barbara, G.S. (2002) Effect of Additives on the Physiochemical and Catalytic Properties of Oxide Catalysts in Selective Oxidation. Topics in Catalysis, 21, 1-3.
http://dx.doi.org/10.1023/A:1020577912420

[10]   Sugunan, S. and Paul, A. (1998) Basicity and Catakytic Activity of ZrO2-Y2O3 Mixed Oxides in the Oxidation of Cyclohexanol. Reaction Kinetics and Catalysis Letters, 65, 343-348.
http://dx.doi.org/10.1007/BF02475274

[11]   Zaki, M.I., Hasan, M.A. and Pasupulety. L. (2001) In Situ FTIR Spectroscopic Study of 2-Propanol Adsorption and Catalytic Interaction on Metal-Modified Aluminas. Langmuir, 17, 4025-4034.
http://dx.doi.org/10.1021/la001810r

[12]   Qian, H., Miedziak, P.J., kesavan, L., Dimitratos, N., Sankar, M., et al. (2013) Switching-Off Toluene Formation in the Solvent-Free Oxidation of Benzyl Alcohol Using Supported Trimetallic Au-Pd-Pt Nanoparticales. Faraday Discussions, 162, 365-378.
http://dx.doi.org/10.1039/c2fd20153d

[13]   Sadiq, M., Razia., Sajid, H. and Zamin, G. (2014) Efficiency of Iron Supported on Porous Material (Prepared from Peanut Shell) for Liquid Phase Aerobic Oxidation of Alcohols. Modern Research in Catalysis, 3, 35-48.
http://dx.doi.org/10.4236/mrc.2014.32006

[14]   van Dam, H.E., Wisse, L.J. and van Bekkum, H. (1990) Platinum/Carbon Oxidation Catalysts: VIII. Selecting a Metal for Liquid-Phase Alcohol Oxidations. Applied Catalysis, 61, 187-197.
http://dx.doi.org/10.1016/S0166-9834(00)82143-0

[15]   Yamaguchi, K. and Mizuno, N. (2002) Supported Ruthenium Catalyst for the Heterogeneous Oxidation of Alcohols with Molecular Oxygen. Angewandte Chemie International Edition, 41, 4538-4542.
http://dx.doi.org/10.1002/1521-3773(20021202)41:23<4538::AID-ANIE4538>3.0.CO;2-6

[16]   Hronec, M., Cvengrosova, Z., Tulejy, J. and Ilavsky, J. (1990) Liquid-Phase Oxidation of Hydrocarbons and Alcohols Catalyzed by Heterogeneous Palladium and Platinum Catalysts. Studies in Surface Science and Catalysis, 55, 169-176.
http://dx.doi.org/10.1016/S0167-2991(08)60146-9

[17]   Hronec, M., Cvengrosova, Z. and Kizlink, J. (1993) Competitive Oxidation of Alcohols in Aqueous Phase Using Pd/C Catalyst. Journal of Molecular Catalysis, 83, 75-82.
http://dx.doi.org/10.1016/0304-5102(93)87008-V

[18]   Akada, M., Nakano, S., Sugiyama, T., Ichitoh, K., Nakao, H., Akita, M. and Moro-oka, Y. (1993) A Practical O2- Oxidation of Functionalized Alcohols Producing Carboxylic Acids Catalyzed by the Pd-C/Pb(OAc)2 System. Bulletin of the Chemical Society of Japan, 66, 1511-1515.
http://dx.doi.org/10.1246/bcsj.66.1511

[19]   Kimura, H., Kimura, A., Kokubo, I., Wakisaka, T. and Mitsuda, Y. (1993) Palladium Based Multi-Component Catalytic Systems for the Alcohol to Carboxylate Oxidation Reaction. Applied Catalysis A: General, 95,143-169.

[20]   Oi, R. and Takenaka, S. (1988) Selective Conversion of m-Hydroxybenzyl Alcohols to m-Hydroxybenzaldehyde. Chemistry Letters, 17, 1115-1116.
http://dx.doi.org/10.1246/cl.1988.1115

[21]   Hayashi, H., Sugiyama, S., Shigemoto, N., Miyaura, K., Tsujino, S., Kawashiro, K. and Uemura, S. (1993) Formation of an Intermetallic Compound Pd3Te with Deactivation of Te/Pd/C Catalysts for Selective Oxidation of Sodium Lactate to Pyruvate in Aqueous Phase. Catalysis Letters, 19, 369-373.
http://dx.doi.org/10.1007/BF00767080

[22]   Mallat, T., Bodnar, Z., Baiker, A., Greis, O., Strubig, H. and Reller, A. (1993) Preparation of Promoted Platinum Catalysts of Designed Geometry and the Role of Promoters in the Liquid-Phase Oxidation of 1-Methoxy-2-Propanol. Journal of Catalysis, 142, 237-253.
http://dx.doi.org/10.1006/jcat.1993.1204

 
 
Top