[1] Gong, A., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z. and Dickey, E.C. (2001) Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation. Journal of Materials Research, 16, 3331-3334.
http://dx.doi.org/10.1557/JMR.2001.0457
[2] Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N. and Grimes, C.A. (2003) Fabrication of Tapered, Conical-Shaped Titania Nanotubes. Journal of Materials Research, 18, 2588-2593.
http://dx.doi.org/10.1557/JMR.2003.0362
[3] Cai, Q., Paulose, M., Varghese, O.K. and Grimes, C.A. (2005) The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation. Journal of Materials Research, 20, 230-236.
http://dx.doi.org/10.1557/JMR.2005.0020
[4] Kontos, A.G., Kontos, A.I., Tsoulkleris, D.S., Likodimos, V., Kunze, J., Schmuki, P. and Falaras, P. (2009) Photo-Induced Effects on Self-Organized TiO2 Nanotube Arrays: The Influence of Surface Morphology. Nanotechnology, 20, 045603 (1-9).
http://dx.doi.org/10.1088/0957-4484/20/4/045603
[5] Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2005) Enhanced Photocleavage of Water Using Titania Nanotube Arrays. Nano Letters, 5, 191-195.
http://dx.doi.org/10.1021/nl048301k
[6] Grimes, C.A., Varghese, O.K. and Ranjan, S. (2008) The Solar Hydrogen Generation by Water Photoelectrolysis. Springer, New York.
[7] Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K. and Grimes, C.A. (2007) Highly-Ordered TiO2 Nanotube Arrays up to 220 μm in Length: Use in Water Photoelectrolysis and Dye-Sensitized Solar Cells. Nanotechnology, 18, 065707 (1-11).
http://dx.doi.org/10.1088/0957-4484/18/6/065707
[8] Mura, F., Masci, A., Pasquali, M. and Pozio, A. (2010) Stable TiO2 Nanotube Arrays with High UV Photoconversion Efficiency. Electrochimica Acta, 55, 2246-2251.
http://dx.doi.org/10.1016/j.electacta.2009.11.060
[9] Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C. and Grimes, C.A. (2003) Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure. Advanced Materials, 15, 624-627.
http://dx.doi.org/10.1002/adma.200304586
[10] Varghese, O.K., Gong, D., Paulose, M., Ong, K.G. and Grimes, C.A. (2003) Hydrogen Sensing Using Titania Nanotubes. Sens. Actuators B, 93, 338-344.
http://dx.doi.org/10.1016/S0925-4005(03)00222-3
[11] Chen, Q., Xu, D., Wu, Z. and Liu, Z. (2008) Free-Standing TiO2 Nanotube Arrays Made by Anodic Oxidation and Ultrasonic Splitting. Nanotechnology, 19, 365708, 5 p.
[12] Sennik, E., Colak, Z., Kilinc, N. and Ozturk, Z.Z. (2010) Synthesis of Highly-Ordered TiO2 Nanotubes for a Hydrogen Sensor. International Journal of Hydrogen Energy, 35, 4420-4427.
http://dx.doi.org/10.1016/j.ijhydene.2010.01.100
[13] Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2007) High Efficiency Double Heterojunction Polymer Photovoltaic Cells Using Highly Ordered TiO2 Nanotube Arrays. Applied Physics Letters, 91, 152111(pp3). http://dx.doi.org/10.1063/1.2799257
[14] Mor, G.K., Basham, J., Paulose, M., Kim, S., Varghese, O.K., Vaish, A., Yoriya, S. and Grimes, C.A. (2010) High- Efficiency Förster Resonance Energy Transfer in Solid-State Dye Sensitized Solar Cells. Nano Letters, 10, 2387-2394.
http://dx.doi.org/10.1021/nl100415q
[15] Wang, Y., Yang, H., Liu, Y., Wang, H., Shen, H., Yan, J. and Xu, H.M. (2010) The Use of Ti Meshes with Self-Organized TiO2 Nanotubes as Photoanodes of All-Ti Dye-Sensitized Solar Cells. Progress in Photovoltaics: Research and Applications, 18, 285-290.
[16] Alivov, Y. and Fan, Z.Y. (2010) Dye-Sensitized Solar Cells Using TiO2 Nanoparticles Transformed from Nanotube Arrays. Journal of Materials Science, 45, 2902-2906. http://dx.doi.org/10.1007/s10853-010-4281-2
[17] Liu, Z. and Misra, M. (2010) Bifacial Dye-Sensitized Solar Cells Based on Vertically Oriented TiO2 Nanotube Arrays. Nanotechnology, 21, 125703, 4 p.
[18] Fang, D., Liu, S.Q., Chen, R.Y., Huang, K.L., Li, J.S., Yu, C. and Qin, D.Y. (2008) Fabrication and Characterization of Highly Ordered Porous Anodic Titania on Titanium Substrate. Journal of Inorganic Materials, 23, 647-651.
http://dx.doi.org/10.3724/SP.J.1077.2008.00647
[19] Oh, S.H., Finones, R.R., Daraio, C., Chen, L.H. and Jin, S. (2005) Growth of Nano-Scale Hydroxyapatite Using Chemically Treated Titanium Oxide Nanotubes. Biomaterials, 26, 4938-4943.
http://dx.doi.org/10.1016/j.biomaterials.2005.01.048
[20] Oh, S.H. and Jin, S. (2006) Titanium Oxide Nanotubes with Controlled Morphology for Enhanced Bone Growth. Materials Science and Engineering: C, 26, 1301-1306.
http://dx.doi.org/10.1016/j.msec.2005.08.014
[21] Oh, H.J., Lee, J.H., Kim, Y.J., Suh, S.J., Lee, J.H. and Chi, C.S. (2008) Surface Characteristics of Porous Anodic TiO2 Layer for Biomedical Applications. Materials Chemistry and Physics, 109, 10-14.
http://dx.doi.org/10.1016/j.matchemphys.2007.11.022
[22] Das, K., Bandyopadhyay, A. and Bose, S. (2008) Biocompatibility and in Situ Growth of TiO2 Nanotubes on Ti Using Different Electrolyte Chemistry. Journal of the American Ceramic Society, 91, 2808-2814.
http://dx.doi.org/10.1111/j.1551-2916.2008.02545.x
[23] Popat, K.C., Eltgroth, M., LaTempa, T.J., Grimes, C.A. and Desai, T.A. (2007) Decreased Staphylococcus epidermis Adhesion and Increased Osteoblast Functionality on Antibiotic-Loaded Titania Nanotubes. Biomaterials, 28, 4880- 4888. http://dx.doi.org/10.1016/j.biomaterials.2007.07.037
[24] Popat, K.C., Eltgroth, M., LaTempa, T.J., Grimes, C.A. and Desai, T.A. (2007) Titania Nanotubes: A Novel Platform for Drug-Eluting Coatings for Medical Implants? Small, 3/11, 1878-1881.
http://dx.doi.org/10.1002/smll.200700412
[25] Peng, L., Mendelsohn, A.D., LaTempa, T.J., Yoriya, S., Grimes, C.A. and Desai, T.A. (2009) Long-Term Small Molecule and Protein Elution from TiO2 Nanotubes. Nano Letters, 9, 1932-1936.
http://dx.doi.org/10.1021/nl9001052
[26] Wang, Y., Feng, C., Jin, Z., Zhang, J., Yang, J.J. and Zhang, S.L. (2006) A Novel N-Doped TiO2 with High Visible Light Photocatalytic Activity. Journal of Molecular Catalysis A: Chemical, 260, 1-3.
http://dx.doi.org/10.1016/j.molcata.2006.06.044
[27] Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Frey, L. and Schmuki, P. (2006) Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes. Nano Letters, 6, 1080-1082.
http://dx.doi.org/10.1021/nl0600979
[28] Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Kleber, S. and Schmuki, P. (2006) TiO2 Nanotube Layers: Dose Effects during Nitrogen Doping by Ion Implantation. Chemical Physics Letters, 419, 426-429.
http://dx.doi.org/10.1016/j.cplett.2005.11.102
[29] Shankar, K., Tep, K.C., Mor, G.K. and Grimes, C.A. (2006) An Electrochemical Strategy to Incorporate Nitrogen in Nanostructured TiO2 Thin Films: Modification of Bandgap and Photoelectrochemical Properties. Journal of Physics D, 39, 2361-2366. http://dx.doi.org/10.1088/0022-3727/39/11/008
[30] Li, Q. and Shang, J.K. (2009) Self-Organized Nitrogen and Fluorine Co-Doped Titanium Oxide Nanotube Arrays with Enhanced Visible Light Photocatalytic Performance. Environmental Science and Technology, 43, 8923-8929.
http://dx.doi.org/10.1021/es902214s
[31] Dong, L., Ma, Y., Wang, Y., Tian, Y., Ye, G., Jia, X. and Cao, G.X. (2009) Preparation and Characterization of Nitrogen-Doped Titania Nanotubes. Materials Letters, 63, 1598-1600. http://dx.doi.org/10.1016/j.matlet.2009.04.022
[32] Xu, J., Ao, Y.H., Chen, M. and Fu, D. (2010) Photoelectrochemical Property and Photocatalytic Activity of N-Doped TiO2 Nanotube Arrays. Applied Surface Science, 256, 4397-4401.
http://dx.doi.org/10.1016/j.apsusc.2010.02.037
[33] Park, J.H., Kim, S. and Bard, A.J. (2006) Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6, 24-28. http://dx.doi.org/10.1021/nl051807y
[34] Raja, K.S., Misra, M., Mahajan, V.K., Gandhi, T., Pillai, P. and Mohapatra, S.K. (2006) Photo-Electrochemical Hydrogen Generation Using Band-Gap Modified Nanotubular Titanium Oxide in Solar Light. Journal of Power Sources, 161, 1450-1457. http://dx.doi.org/10.1016/j.jpowsour.2006.06.044
[35] Wu, G., Nishikawa, T., Ohtani, B. and Chen, A. (2007) Synthesis and Characterization of Carbon-Doped TiO2 Nanostructures with Enhanced Visible Light Response. Chemistry of Materials, 19, 4530-4537.
http://dx.doi.org/10.1021/cm071244m
[36] Mohapatra, S.K., Misra, M., Mahajan, V.K. and Raja, K.S. (2007) Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode. The Journal of Physical Chemistry C, 111, 8677-8685. http://dx.doi.org/10.1021/jp071906v
[37] Hahn, R., Ghicov, A., Salonen, J., Lehto, V.P. and Schmuki, P. (2007) Carbon Doping of Self-Organized TiO2 Nanotube Layers by Thermal Acetylene Treatment. Nanotechnology, 18, 105604 (pp4).
http://dx.doi.org/10.1088/0957-4484/18/10/105604
[38] Lu, N., Zhao, H., Li, J., Quan, X. and Chen, S. (2008) Characterization of Boron-Doped TiO2 Nanotube Arrays Prepared by Electrochemical Method and Its Visible Light Activity. Separation and Purification Technology, 62, 668-673. http://dx.doi.org/10.1016/j.seppur.2008.03.021
[39] Su, Y., Han, S., Zhang, X., Chen, X. and Lei, L. (2008) Preparation and Visible-Light-Driven Photoelectrocatalytic Properties of Boron-Doped TiO2 Nanotubes. Materials Chemistry and Physics, 110, 239-246.
http://dx.doi.org/10.1016/j.matchemphys.2008.01.036
[40] Yin, S., Yamaki, H., Komatsu, M., Zhang, Q., Wang, J., Tang, Q., Saito, F. and Sato, T. (2003) Preparation of Nitrogen-Doped Titania with High Visible Light Induced Photocatalytic Activity by Mechanochemical Reaction of Titania and Hexamethylenetetramine. Journal of Material Chemistry, 13, 2996-3001. http://dx.doi.org/10.1039/b309217h
[41] Lu, N., Zhao, H., Li, J., Quan, X. and Chen, S. (2008) Characterization of Boron-Doped TiO2 Nanotube Arrays Prepared by Electrochemical Method and Its Visible Light Activity. Separation and Purification Technology, 62, 668-673.
[42] Vitiello, R.P., Macak, J.M., Ghicov, A., Tsuchiya, H., Dick, L.F.P. and Schmuki, P. (2006) N-Doping of Anodic TiO2 Nanotubes Using Heat Treatment in Ammonia. Electrochemistry Communications, 8, 544-548.
http://dx.doi.org/10.1016/j.elecom.2006.01.023
[43] Macak, M., Ghicov, A., Hahn, R., Tsuchiya, H. and Schmuki, P. (2006) Photoelectrochemical Properties of N-Doped Self-Organized Titania Nanotube Layers with Different Thicknesses. Journal of Materials Research, 21, 2824-2828.
http://dx.doi.org/10.1557/jmr.2006.0344
[44] Lei, L., Su, Y., Zhou, M., Zhang, X.W. and Chen, X.Q. (2007) Fabrication of Multi-Non-Metal-Doped TiO2 Nanotubes by Anodization in Mixed Acid Electrolyte. Materials Research Bulletin, 42, 2230-2236.
http://dx.doi.org/10.1016/j.materresbull.2007.01.001
[45] Tang, X.H. and Li, D.Y. (2008) Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response. Journal of Physical Chemistry C, 112, 5405-5409. http://dx.doi.org/10.1021/jp710468a
[46] Yang, X., Chen, J., Gong, L., Wu, M. and Yu, J.C. (2009) Cross-Medal Arrays of Ta-Doped Rutile Titania. Journal of the American Chemical Society, 131, 12048-12049. http://dx.doi.org/10.1021/ja904337x
[47] Meng, F. (2005) Influence of Sintering Temperature on Semi-Conductivity and Nonlinear Electrical Properties of TiO2-Based Varistor Ceramics. Materials Science and Engineering B, 117, 77-80.
http://dx.doi.org/10.1016/j.mseb.2004.10.021
[48] Feng, X., Shankar, K., Paulose, M. and Grimes, C.A. (2009) Tantalum-Doped Titanium Dioxide Nanowire Arrays for Dye-Sensitized Solar Cells with High Open-Circuit Voltage. Angewandte Chemie, 121, 8239-8242.
http://dx.doi.org/10.1002/ange.200903114
[49] Obata, K., Irie, H. and Hashimoto, K. (2007) Enhanced Photocatalytic Activities of Ta, N Co-Doped TiO2 Thin Films under Visible Light. Chemical Physics, 339, 124-132.
http://dx.doi.org/10.1016/j.chemphys.2007.07.044
[50] Mura, F., Pozio, A., Masci, A. and Pasquali, M. (2009) Effect of a Galvanostatic Treatment on the Preparation of Highly Ordered TiO2 Nanotubes. Electrochimica Acta, 54, 3794-3798.
http://dx.doi.org/10.1016/j.electacta.2009.01.073
[51] Dupuis, G. and Menu, M. (2006) Quantitative Characterisation of Pigment Mixtures Used in Art by Fibre-Optics Diffuse-Reflectance Spectroscopy. Applied Physics A, 83, 469-474.
http://dx.doi.org/10.1007/s00339-006-3522-3
[52] Simmons, E.L. (1975) Diffuse Reflectance Spectroscopy: A Comparison of the Theories. Applied Optics, 14, 1380- 1386. http://dx.doi.org/10.1364/AO.14.001380
[53] Yoldas, B.E. and Partlow, D.P. (1985) Formation of Broad Band Antireflective Coatings on Fused Silica for High Power Laser Applications. Thin Solid Films, 129, 1-14. http://dx.doi.org/10.1016/0040-6090(85)90089-6
[54] Mor, G.K., Varghese, O.K., Paulose, M. and Grimes, C.A. (2005) Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films. Advanced Functional Materials, 15, 1291-1296.
http://dx.doi.org/10.1002/adfm.200500096
[55] Burgeth, G. and Kisch, H. (2002) Photocatalytic and Photoelectrochemical Properties of Titania-Chloroplatinate (IV). Coordination Chemistry Reviews, 230, 41-47. http://dx.doi.org/10.1016/S0010-8545(02)00095-4
[56] Sakthivel, S. and Kisch, H. (2003) Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Angewandte Chemie International Edition, 42, 4908-4911. http://dx.doi.org/10.1002/anie.200351577
[57] Lin, H., Huang, C.P., Li, W., Ni, C., Ismat Shah, S. and Tseng, Y. (2006) Size Dependency of Nanocrystalline TiO2 on Its Optical Property and Photocatalytic Reactivity Exemplified by 2-Chlorophenol. Applied Catalysis B: Environmental, 68, 1-11. http://dx.doi.org/10.1016/j.apcatb.2006.07.018
[58] Wei, W., Macak, J.M. and Schmuki, P. (2008) High Aspect Ratio Ordered Nanoporous Ta2O5 Films by Anodization of Ta. Electrochemistry Communications, 10, 428-432.
http://dx.doi.org/10.1016/j.elecom.2008.01.004
[59] Allam, N.K., Feng, X.J. and Grimes, C.A. (2008) Self-Assembled Fabrication of Vertically Oriented Ta2O5 Nanotube Arrays, and Membranes Thereof, by One-Step Tantalum Anodization. Chemistry of Materials, 20, 6477-6481.
http://dx.doi.org/10.1021/cm801472y
[60] Macak, J.M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S. and Schmuki, P. (2007) TiO2 Nanotubes: Self-Organized Electrochemical Formation, Properties and Applications. Current Opinion in Solid State and Materials Science, 11, 3-18. http://dx.doi.org/10.1016/j.cossms.2007.08.004
[61] Navale, S.C., Vadivel Murugan, A. and Ravi, V. (2007) Varistors Based on Ta-Doped TiO2. Ceramics International, 33, 301-303. http://dx.doi.org/10.1016/j.ceramint.2005.07.026
[62] Thamaphat, K., Limsuwan, P. and Ngotawornchai, B. (2008) Phase Characterization of TiO2 Powder by XRD and TEM. Kasetsart Journal: Natural Science, 42, 357-361. http://kasetsartjnatsci.kasetsart.org/
[63] Nashed, R., Szymanski, P., El-Sayed, M.A. and Allam, N.K. (2014) Self-Assembled Nanostructured Photoanodes with Staggered Bandgap for Efficient Solar Energy Conversion. American Chemical Society Nano, 8, 4915-4923.
[64] Oliva, F.Y., Avalle, L.B., Santos, E. and Cámara, O.R. (2002) Photoelectrochemical Characterization of Nanocrystalline TiO2 Films on Titanium Substrates. Journal of Photochemistry and Photobiology A: Chemistry, 146, 175-188.
http://dx.doi.org/10.1016/S1010-6030(01)00614-1
[65] Radecka, M., Rekas, M., Trenczek-Zajac, A. and Zakrzewska, K. (2008) Importance of the Band Gap Energy and Flat Band Potential for Application of Modified TiO2 Photoanodes in Water Photolysis. Journal of Power Sources, 181, 46-55. http://dx.doi.org/10.1016/j.jpowsour.2007.10.082
[66] van de Krol, R., Goossens, A. and Schoonman, J. (1997) Mott-Schottky Analysis of Nanometer-Scale Thin-Film Anatase TiO2. Journal of the Electrochemical Society, 144, 1723-1727.
http://dx.doi.org/10.1149/1.1837668
[67] Bolts, J.M. and Wrighton, M.S. (1976) Correlation of Photocurrent-Voltage Curves with Flat-Band Potential for Stable Photoelectrodes for the Photoelectrolysis of Water. The Journal of Physical Chemistry, 80, 2641-2645.
http://dx.doi.org/10.1021/j100565a004
[68] O’Hayre, R., Nanu, M., Schoonman, J. and Goossens, A. (2007) Mott-Schottky and Charge-Transport Analysis of Nanoporous Titanium Dioxide Films in Air. Journal of Physical Chemistry C, 111, 4809-4814.
http://dx.doi.org/10.1021/jp068354l
[69] Bondarenko, A.S. and Ragoisha, G.A. (2005) Variable Mott-Schottky Plots Acquisition by Potentiodynamic Electrochemical Impedance Spectroscopy. Journal of Solid State Electrochemistry, 9, 845-849.
http://dx.doi.org/10.1007/s10008-005-0025-7
[70] Scharnweber, D., Beutner, R., Rössler, S. and Worch, H. (2002) Electrochemical Behavior of Titanium-Based Materials—Are There Relations to Biocompatibility? Journal of Materials Science: Materials in Medicine, 13, 1215-1220.
http://dx.doi.org/10.1023/A:1021118811893
[71] Jakob, M., Levanon, H. and Kamat, P.V. (2003) Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level. Nano Letters, 3, 353-358.
http://dx.doi.org/10.1021/nl0340071