Septic B-Spline Collocation Method for the Numerical Solution of the Modified Equal Width Wave Equation

References

[1] P. J. Morrison, J. D. Meiss and J. R. Carey, “Scattering of Regularized-Long-Wave Solitary Waves,” Physica D: Non- linear Phenomena, Vol. 11, No. 3, 1984, pp. 324-336.
doi:10.1016/0167-2789(84)90014-9

[2] L. R. T. Gardner and G. A. Gardner, “Solitary Waves of the Regularized Long Wave Equation,” Journal of Computational Physics, Vol. 91, No. 2, 1990, pp. 441-459.
doi:10.1016/0021-9991(90)90047-5

[3] L. R. T. Gardner and G. A. Gardner, “Solitary Waves of the Equal Width Wave Equation,” Journal of Computational Physics, Vol. 101, No. 1, 1992, pp. 218-223.
doi:10.1016/0021-9991(92)90054-3

[4] L. R. T. Gardner, G. A. Gardner, F. A. Ayoup and N. K. Amein, “Simulations of the EW Undular Bore,” Communications in Numerical Methods in Engineering, Vol. 13, No. 7, 1997, pp. 583-592.
doi:10.1002/(SICI)1099-0887(199707)13:7<583::AID-CNM90>3.0.CO;2-E

[5] S. I. Zaki, “Solitary Wave Interactions for the Modified Eual Width Equation,” Computer Physics Communications, Vol. 126, No. 3, 2000, pp. 219-231.
doi:10.1016/S0010-4655(99)00471-3

[6] S. I. Zaki, “A Least-Squares Finite Element Scheme for the Ew Equation,” Computer Methods in Applied Mechanics and Engineering, Vol. 189, No. 2, 2000, pp. 587- 594. doi:10.1016/S0045-7825(99)00312-6

[7] A. M. Wazwaz, “The tanh and sine-cosine Methods for a Reliable Treatment of the Modified Equal Width Equation and Its Variants,” Communications in Nonlinear Science and Numerical Simulation, Vol. 11, No. 2, 2006, pp. 148-160. doi:10.1016/j.cnsns.2004.07.001

[8] A. Esen, “A Numerical Solution of the Equal Width Wave Equation by a Lumped Galerkin Method,” Applied Mathematics and Computational, Vol. 168, No. 1, 2005, pp. 270-282. doi:10.1016/j.amc.2004.08.013

[9] A. Esen, “A Lumped Galerkin Method for the Numerical Solution of the Modified Equal Width Wave Equation Using Quadratic B Splines,” International Journal of Computer Mathematics, Vol. 83, No. 5-6, 2006, pp. 449- 459. doi:10.1080/00207160600909918

[10] B. Saka, “Algorithms for Numerical Solution of the Modified Equal Width Wave Equation Using Collocation Method,” Mathematical and Computer Modelling, Vol. 45, No. 9-10, 2007, pp. 1096-1117.
doi:10.1016/j.mcm.2006.09.012

[11] B. Saka and ?. Dag, “Quartic B-Spline Collocation Method to the Numerical Solutions of the Burgers Equation,” Chaos, Solitons and Fractals, Vol. 32, No. 3, May 2007, pp. 1125-1137. doi:10.1016/j.chaos.2005.11.037

[12] J. F. Lu, “He’s Variational Method for the Modified Equal Width Wave Equation,” Chaos Solitons and Fractals, Vol. 39, No. 5, 2009, pp. 2102-2109.
doi:10.1016/j.chaos.2007.06.104

[13] S. Hamdi, W. E. Enright, W. E. Schiesser, J. J. Gottlieb and A. Alaal, “Exact Solutions of the Generalized Equal Width Wave Equation,” Proceedings of the International Conference on Computational Science and Its Application, LNCS, Springer-Verlog, Berlin, Vol. 2668, 2003, pp. 725-734.

[14] D. J. Evans, K. R. Raslan and A. Alaal, “Solitary Waves for the Generalized Equal Width (Gew) Equation,” International Journal of Computer Mathematics, Vol. 82, No. 4, 2005, pp. 445-455.

[15] T. Geyikli, “Modelling Solitary Waves of a Fifth-Order Non-Linear Wave Equation,” International Journal of Computer Mathematics, Vol. 84, No. 7, July 2007, pp. 1079-1087. doi:10.1080/00207160701294368

[16] S. G. Rubin and R. A. Graves, “A Cubic Spline Approximation for Problems in Fluid Mechanics,” Nasa TR R-436, Washington, DC, 1975.

[17] J. Caldwell and P. Smith, “Solution of Burgers’ Equation with a Large Reynolds Number,” Applied Mathematical Modelling, Vol. 6, No. 5, October 1982, pp. 381-386.
doi:10.1016/S0307-904X(82)80102-9

[18] A. Esen and S. Kutluay, “Solitary Wave Solutions of the Modified Equal Width Wave Equation,” Communications in Nonlinear Science and Numerical Simulation, Vol. 13, No. 8, 2008, pp. 1538-1546.
doi:10.1016/j.cnsns.2006.09.018

[19] K. R. Raslan, “Collocation Method Using Cubic B-Spline for the Generalized Equal Width Equation,” International Journal of Simulation and Process Modelling, Vol. 2, No. 1-2, 2006, pp. 37-44.