AM  Vol.6 No.1 , January 2015
Darboux Transformation and New Multi-Soliton Solutions of the Whitham-Broer-Kaup System
Abstract: Through a variable transformation, the Whitham-Broer-Kaup system is transformed into a parameter Levi system. Based on the Lax pair of the parameter Levi system, the N-fold Darboux transformation with multi-parameters is constructed. Then some new explicit solutions for the Whitham-Broer-Kaup system are obtained via the given Darboux transformation.
Cite this paper: Xu, T. (2015) Darboux Transformation and New Multi-Soliton Solutions of the Whitham-Broer-Kaup System. Applied Mathematics, 6, 20-27. doi: 10.4236/am.2015.61003.

[1]   Zabusky, N.J. and Galvin, C.J. (1971) Shallow-Water Waves, the Korteweg-de Vries Equation and Solitons. Journal of Fluid Mechanics, 47, 811-824.

[2]   Dullin, H.R., Georg, A.G. and Holm, D.D. (2003) Camassa-Holm, Korteweg-de Vries-5 and Other Asymptotically Equivalent Equations for Shallow Water Waves. Fluid Dynamics Research, 33, 73-95.

[3]   Chakravarty, S. and Kodama, Y. (2009) Soliton Solutions of the KP Equation and Application to Shallow Water Waves. Studies in Applied Mathematics, 123, 83-151.

[4]   Kodama, Y. (2010) KP Solitons in Shallow Water. Journal of Physical A: Mathematical and Theoretical, 43, Article ID: 434004.

[5]   Lambert, F., Musette, M. and Kesteloot, E. (1987) Soliton Resonances for the Good Boussinesq Equation. Inverse Problems, 3, 275-288.

[6]   Li, Y.S. and Zhang, J.E. (2001) Darboux Transformation of Classical Boussinesq System and Its Multi-Soliton Solutions. Physics Letters A, 284, 253-258.

[7]   Ablowitz, M.J. and Clarkson, P.A. (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge.

[8]   Rogers, C. and Schief, W.K. (2002) B?cklund and Darboux Transformations Geometry and Modern Application in Soliton Theory. Cambridge University Press, Cambridge.

[9]   Hirota, R. (2004) The Direct Method in Soliton Theory. Cambridge University Press, Cambridge.

[10]   Gu, C.H., Hu, H.S. and Zhou, Z.X. (2005) Darboux Transformation in Soliton Theory and Its Geometric Applications. Shanghai Science Technology Publication House, Shanghai.

[11]   Whitham, G.B. (1967) Variational Methods and Applications to Water Wave. Proceedings of the Royal Society A, 299, 6-25.

[12]   Broer, L.J. (1975) Approximate Equations for Long Water Waves. Applied Scientific Research, 31, 377-395.

[13]   Kaup, D.J. (1975) A Higher-Order Water Equation and Method for Solving It. Progress of Theoretical Physics, 54, 396-408.

[14]   Kupershmidt, B.A. (1985) Mathematics of Dispersive Water Waves. Communications in Mathematical Physics, 99, 51-73.

[15]   Xia, Z. (2004) Homogenous Balance Method and Exact Analytical Solutions for Whitham-Broer-Kaup Equations in the Shallow Water. Chinese Quarterly Journal of Mathematics, 19, 240-246.

[16]   Xie, F.D. and Gao, X.S. (2004) A Computational Approach to the New Type Solutions of Whitham-Broer-Kaup Equation in Shallow Water. Communications in Theoretical Physics, 41, 179-182.

[17]   Zhang, J.F., Guo, G.P. and Wu, F.M. (2002) New Multi-Soliton Solutions and Travelling Wave Solutions of the Dispersive Long-Wave Equations. Chinese Physics, 11, 533-536.

[18]   Lin, G.D., Gao, Y.T., Gai, X.L. and Meng, D.X. (2011) Extended Double Wronskian Solutions to the Whitham-Broer-Kaup Equations in Shallow Water. Nonlinear Dynamics, 64, 197-206.

[19]   Wang, L., Gao, Y.T. and Gai, X.T. (2012) Gauge Transformation, Elastic and Inelastic Interactions for the Whitham-Broer-Kaup Shallow-Water Model. Communications in Nonlinear Science and Numerical Simulation, 17, 2833-2844.

[20]   Geng, X.G. and Tam, H.W. (1999) Darboux Transformation and Soliton Solutions for Generalized Nonlinear Schrödinger Equations. Journal of Physical Society of Japan, 68, 1508-1512.

[21]   Huang, D.J. and Zhang, H.Q. (2008) Vandermonde-Like Determinants’ Representations of Darboux Transformations and Expliclt Solutions for the Modified Kadomtsev-Petviashvili Equation. Physica A, 387, 4565-4580.