[1] Alberts, B., et al. (2012) Molecular Biology of the Cell Garland. 5th Edition, New York.
[2] Mattetti, A. and Risuleo, G. (2014) Apoptosis: A Mode of Cell Death. Biochemistry & Molecular Biology, 2, 34-39.
http://dx.doi.org/10.12966/bmb.09.02.2014
[3] Cosimati, R., Milardi, G.L., Bombelli, C., Bonincontro, A., Bordi, F., Mancini, G. and Risuleo, G. (2013) Interactions of DMPC and DMPC/Gemini Liposomes with the Cell Membrane Investigated by Electrorotation. BBA Biomembranes, 1828, 352-356.
http://dx.doi.org/10.1016/j.bbamem.2012.10.021
[4] Hope, M.J., Nayar, R., Mayer, L.D. and Cullis, P.R. (1992) Reduction of Liposomes Size and Preparation of Unilamellar Vesicles by Extrusion Techniques. In: Gregoriadis, G., Ed., Liposome Technology, 2nd Edition, CRC Press, Boca Raton, Vol. I, 123-139.
[5] MacDonald, R.C. and MacDonald, R.I. (1992) Application of Freezing and Thawing in Liposomes Technology. In: Gregoriadis, G., Ed., Liposome Technology, 2nd Edition, Vol. I, CRC Press, Boca Raton, 140-155.
[6] Foster, K.R., Sauer, F.A. and Schwan, H.P. (1992) Electrorotation and Levitation of Cells and Colloidal Particles. Biophysical Journal, 63, 180-190.
http://dx.doi.org/10.1016/S0006-3495(92)81588-6
[7] Gimsa, J. (2001) A Comprehensive Approach to Electro-Orientation, Electrodeformation, Dielectrophoresis, and Electrorotation of Ellipsoidal Particles and Biological Cells. Bioelectrochemistry, 54, 23-31.
http://dx.doi.org/10.1016/S0302-4598(01)00106-4
[8] Gimsa, J., Pritzen, C. and Donath, E. (1989) Characterisation of Virus-Red Cell Interaction by Electrorotation. Studia Biophysica, 130, 123-131.
[9] Gimsa, J., Marszalek, P., Loewe, U. and Tsong, T.Y. (1991) Dielectrophoresis and Electrorotation of Neurospora Slime and Murine Myeloma Cells. Biophysical Journal, 60, 749-760.
http://dx.doi.org/10.1016/S0006-3495(91)82109-9
[10] Wang, X.-B., Huang, Y., Gascoyne, P.R.C., Becker, F.F., Hoelzel, R. and Pethig, R. (1994) Changes in Friend Murine Erythroleukaemia Cell Membranes during Induced Differentiation Determinated by Electrorotation. Biochimica Biophysica Acta, 1193, 330-344.
http://dx.doi.org/10.1016/0005-2736(94)90170-8
[11] Dalton, C., Goater, A.D., Burt, J.P.H. and Smith, H.V. (2004) Analysis of Parasites by Electrorotation. Journal of Applied Microbiology, 96, 24-32.
http://dx.doi.org/10.1046/j.1365-2672.2003.02113.x
[12] Bonincontro, A., Di Ilio, V., Pedata, O. and Risuleo, G. (2007) Dielectric Properties of the Plasma Membrane of Cultured Murine Fibroblasts Treated with a Nonterpenoid Extract of Azadirachta indica Seeds. Journal Membrane Biology, 215, 75-79.
http://dx.doi.org/10.1007/s00232-007-9007-2
[13] Berardi, V., Aiello, C., Bonincontro, A. and Risuleo, G. (2009) Alterations of the Plasma Membrane Caused by Murine Polyomavirus Proliferation: An Electrorotation Study. Journal Membrane Biology, 229, 19-25.
http://dx.doi.org/10.1007/s00232-009-9172-6
[14] Georgieva, R., Neu, B., Shilov, V.M., Knippel, E., Budde, A., Latza, R., Donath, E., Kiesewetter, H. and Baumler, H. (1998) Low Frequency Electrorotation of Fixed Red Blood Cells. Biophysical Journal, 74, 2114-2120.
http://dx.doi.org/10.1016/S0006-3495(98)77918-4
[15] Huang, Y., Wangi, X.-B., Holzel, R., Beckert, F.F. and Gascoyne, P.R.C. (1995) Electrorotational Studies of the Cytoplasmic Dielectric Properties of Friend Murine Erythroleukaemia Cells. Physical Medical Biology, 40, 1789-1806.
http://dx.doi.org/10.1088/0031-9155/40/11/002
[16] Hodgson, C.E. and Pethig, R. (1998) Determination of the Viability of Escherichia coli at the Single Organism Level by Electrorotation. Clinical Chemistry, 44, 2049-2051.
[17] Gimsa, J. (1999) New Light Scattering and Field Trapping Methods Access the Internal Electric Structure of Submicron Particles, like Influenza Viruses. Annals of the New York Academy of Sciences, 873, 287-298.
http://dx.doi.org/10.1111/j.1749-6632.1999.tb09476.x
[18] Dalton, C., Goater, A.D., Drysdale, J. and Pethig, R. (2001) Parasite Viability by Electrorotation. Colloids and Surfaces A—Physiochemical and Engineering Aspects, 195, 263-268.
[19] Gimsa, J., Pritzen, C. and Donath, E. (1989) Characterisation of Virus-Red Cell Interaction by Electrorotation. Studia Biophysica, 130, 123-131.
[20] Zhou, X.F., Markx, G.H. and Pethig, R. (1996) Effect of Biocide Concentration on Electrorotation Spectra of Yeast Cell. Biochimica Biophysica Acta, 1281, 60-64.
http://dx.doi.org/10.1016/0005-2736(96)00015-6
[21] Arnold, W.M. and Zimmermann, U. (1982) Rotating-Field-Induced Rotation and Measurement of the Membrane Capacitance of Single Mesophyll Cells of Avena sativa. Zeitschrift Naturforschung C, 37, 908-915.
[22] Gagnon, Z.R. (2011) Cellular Dielectrophoresis: Applications to the Characterization, Manipulation, Separation and Patterning of Cells. Electrophoresis, 32, 2466-2487.
http://dx.doi.org/10.1002/elps.201100060
[23] Pethig, R. (2013) Dielectrophoresis: An Assessment of Its Potential to Aid the Research and Practice of Drug Discovery and Delivery. Advances in Drug Delivery Reviews, 65, 1589-1599.
http://dx.doi.org/10.1016/j.addr.2013.09.003
[24] Ziervogel, H., Glaser, R., Schadow, D. and Heymann, S. (1986) Electrorotation of Lymphocytes, the Influence of Membrane Events and Nucleus. Bioscience Reports, 6, 973-982.
http://dx.doi.org/10.1007/BF01114974
[25] Gascoyne, P.R.C., Wang, X.-B., Huang, Y. and Becker, F.F. (1997) Dielectrophoretic Separation of Cancer Cells from Blood. IEEE Transactions on Industrial Applications, 33, 670-678.
http://dx.doi.org/10.1109/28.585856
[26] Cristofanilli, M., De Gasperis, G., Zhang, L.S., Hung, M.C., Gascoyne, P.R.C. and Hortobagyi, G.N. (2002) Automated Electrorotation to Reveal Dielectric Variations Related to HER-2/neu Overexpression in MCF-7 Sublines. Clinical Cancer Research, 8, 615-619.
[27] Reuss, O.R., Kurschner, M., Dilsky, S., Horbaschek, M., Schenk, W.A., Zimmermann, U. and Sukhorukov, V.L. (2002) Interaction of Fluorinated Lipophilic Ions with the Plasma Membrane of Mammalian Cells Studied by Electrorotation and Dielectrophoresis. Journal of Electrostatics, 56, 419-434.
http://dx.doi.org/10.1016/S0304-3886(02)00107-9
[28] Zimmermann, D., Kiesel, M., Terpitz, U., Zhou, A., Reuss, R., Kraus, J., Schenk, W.A., Bamberg, E. and Sukhorukov, V.L. (2008) A Combined Patch-Clamp and Electrorotation Study of the Voltage- and Frequency-Dependent Membrane Capacitance Caused by Structurally Dissimilar Lipophilic Anions. Journal of Membrane Biology, 221, 107-121.
http://dx.doi.org/10.1007/s00232-007-9090-4
[29] Sukhorukov, V.L., Imes, D., Woellhaf, M.W., Andronic, J., Kiesel, M., Shirakashi, R., Zimmermann, U. and Zimmermann, H. (2009) Pore Size of Swelling-Activated Channels for Organic Osmolytes in Jurkat Lymphocytes, Probed by Differential Polymer Exclusion. Biochimica Biophysica Acta, 1788, 1841-1850.
http://dx.doi.org/10.1016/j.bbamem.2009.06.016
[30] Memmel, S., Sukhorukov, V.L., Horing, M., Westerling, K., Fiedler, V., Katzer, A., Krohne, G., Flentje, M. and Djuzenova, C.S. (2014) Cell Surface Area and Membrane Folding in Glioblastoma Cell Lines Differing in PTEN and p53 Status. PLoS ONE, 31, e87052.
http://dx.doi.org/10.1371/journal.pone.0087052
[31] Milardi, G.L., Stringaro, A.R., Colone, M., Bonincontro, A. and Risuleo, G. (2014) The Cell Membrane Is the Main Target of Resveratrol as Shown by Interdisciplinary Biomolecular/Cellular and Biophysical Approaches. Journal of Membrane Biology, 247, 1-8.
http://dx.doi.org/10.1007/s00232-013-9604-1
[32] Stefanutti, E., Papacci, F., Sennato, S., Viola, I., Bombelli, C., Bordi, F., Mancini, G., Gigli, G., Bonincontro, A. and Risuleo, G. (2014) Cationic Liposomes DMPC/Gemini Traverse the Cell Membrane and Are Localized within the Cytoplasm without Causing a Significant Bio-Damage. Biochimica Biophysica Acta, 1838, 2646-2655.
http://dx.doi.org/10.1016/j.bbamem.2014.05.026
[33] Berry, R.M. and Berg, H.C. (1996) Torque Generated by the Bacterial Flagellar Motor Close to Stall. Biophysical Journal, 71, 3501-3510.
http://dx.doi.org/10.1016/S0006-3495(96)79545-0
[34] Dalton, C., Goater, A.D. and Smith, H.V. (2006) Fertilization State of Ascaris suum Determined by Electrorotation. Journal of Helminthology, 80, 25-31.
http://dx.doi.org/10.1079/JOH2005326
[35] Gascoyne, P., Pethig, R., Satayavivid, J., Becker, F.F. and Ruchirawat, M. (1997) Dielectrophoretic Detection of Changes in Erythrocyte Membranes Following Malarial Infection. Biochimica et Biophysica Acta: Biomembranes, 1323, 240-252.
http://dx.doi.org/10.1016/S0005-2736(96)00191-5
[36] Nascimento, E., Silva, T. and Oliva, A. (2007) Identification, Characterization and Manipulation of Babesia-Bovis-Infected Red Blood Cells Using Microfluidics Technology. Parassitologia, 49, 45-52.
[37] Shirakashi, R., Mischke, M., Fischer, P., Memmel, S., Krohne, G., Fuhr, G.R., Zimmermann, H. and Sukhorukov, V.L. (2012) Changes in the Dielectric Properties of Medaka Fish Embryos during Development, Studied by Electrorotation. Biochemical Biophysisical Research Communication, 428, 127-131.
http://dx.doi.org/10.1016/j.bbrc.2012.10.019
[38] Goater, A.D., Burt, J.P.H. and Pethig, R. (1997) A Combined Electrorotation and Travelling Wave Device: Applied to the Concentration and Viability of Cryptosporidium. Journal of Physics D: Applied Physics, 33, L65-L70.
http://dx.doi.org/10.1088/0022-3727/30/18/001
[39] Asami, K. and Yonezawa, T. (1996) Dielectric Behaviour of Wild-Type Yeast and Vacuole Deficient Mutant over a Frequency Range of 10 kHz to 10 GHz. Biophysical Journal, 71, 2192-2200.
http://dx.doi.org/10.1016/S0006-3495(96)79420-1
[40] Reichle, C., Schnelle, T., Müller, T., Leya, T. and Fuhr, G. (2000) A New Microsystem for Automated Electrorotation Measurements Using Laser Tweezers. Biochimica et Biophysica Acta, 1459, 218-229.
http://dx.doi.org/10.1016/S0005-2728(00)00150-X
[41] Freitag, R., Schügerl, K., Arnold, W.M. and Zimmermann, U. (1989) The Effect of Osmotic and Mechanical Stress and Enzymatic Digestion on the Electrorotation of Insect Cells (Spodoptera frugiperda). Journal of Biotechnology, 11, 325-336.
http://dx.doi.org/10.1016/0168-1656(89)90017-5
[42] Egger, M. and Donath, E. (1995) Electrorotation Measurements of Diamide-Induced Platelet Activation Changes. Biophysical Journal, 68, 364-372.
http://dx.doi.org/10.1016/S0006-3495(95)80197-9
[43] Chan, K.L., Morgan, H., Morgan, E., Cameron, I.T. and Thomas, M.R. (2000) Measurements of the Dielectric Properties of Peripheral Blood Mononuclear Cells and Trophoblast Cells Using AC Electrokinetic Techniques. Biochimica et Biophysica Acta, 1500, 313-322.
http://dx.doi.org/10.1016/S0925-4439(99)00115-5
[44] Schmutterer, H. (2002) The Neem Tree and Other Meliaceous Plants. Neem Foundation, Mumbai.
[45] Aiello, C., Berardi, V., Ricci, F. and Risuleo, G. (2011) Biological Properties of a Methanolic Extract of Neem Oil, a Natural Oil from the Seeds of the Neem Tree (Azadirachta indica var. A. Juss). In: Preedy, V.R., Watson, R.R. and Patel, V.B., Eds., Nuts & Seeds in Health and Disease Prevention, Elsevier, London, Burlington and San Diego, 813-821.
[46] Di Ilio, V., Pasquariello, N., van der Esch, S.A., Cristofaro, M., Scarsella, G. and Risuleo, G. (2006) Cytotoxic and Antiproliferative Effects Induced by a Non Terpenoid Polar Extract of A. indica Seeds on 3T6 Murine Fibroblasts in Culture. Molecular and Cellular Biochemistry, 287, 69-77.
http://dx.doi.org/10.1007/s11010-005-9062-x
[47] Gimsa, J., Schnelle, T., Zechel, G. and Glaser, R. (1994) Dielectric Spectroscopy of Human Erythrocytes: Investigations under the Influence of Nystatin. Biophysical Journal, 66, 1244-1253.
http://dx.doi.org/10.1016/S0006-3495(94)80908-7
[48] Cen, E.G., Dalton, D., Li, Y., Adamia, S., Pilarski, L.M. and Kaler, K.V. (2004) A Combined Dielectrophoresis, Traveling Wave Dielectrophoresis and Electrorotation Microchip for the Manipulation and Characterization of Human Malignant Cells. Journal of Microbiological Methods, 58, 387-401.
http://dx.doi.org/10.1016/j.mimet.2004.05.002
[49] Bonincontro, A., Iacoangeli, A. and Risuleo, G. (1996) Electrical Conductivity Dispersion as a Probe of Membrane Function after Murine Polyomavirus Infection in Cells in Culture. Bioscience Report, 16, 41-48.
http://dx.doi.org/10.1007/BF01201000
[50] Bonincontro, A., Iacoangeli, A., Melucci-Vigo, G. and Risuleo, G. (1997) Apoptosis Dependent Decrease of the Inter-Membrane Ion Traffic in Cultured Mouse Fibroblasts Shown by Conductivity Dispersion. Bioscience Reports, 17, 547-556.
http://dx.doi.org/10.1023/A:1027364308147
[51] Cazzola, R., Russo-Volpe, S., Cervato, G. and Cestaro, B. (2003) Biochemical Assessments of Oxidative Stress, Erythrocyte Membrane Fluidity and Antioxidant Status in Professional Soccer Players and Sedentary Controls. European Journal of Clinical Investigations, 33, 924-930.
http://dx.doi.org/10.1046/j.1365-2362.2003.01227.x
[52] Ricci, F., Berardi, V. and Risuleo, G. (2008) Differential Cytotoxicity of MEX: A Component of Neem Oil Whose Action Is Exerted at the Cell Membrane Level. Molecules, 14, 122-132.
http://dx.doi.org/10.3390/molecules14010122
[53] Tooze, J., Ed. (1982) Molecular Biology of Tumor Viruses: DNA Tumor Viruses. 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
[54] Iacoangeli, A., Melucci-Vigo, G. and Risuleo, G. (2000) Mechanism of the Inhibition of Murine Polyomavirus DNA Replication Induced by the Ionophore Monensin. Biochimie, 82, 35-39.
http://dx.doi.org/10.1016/S0300-9084(00)00358-8
[55] Campanella, L., Delfini, M., Ercole, P., Iacoangeli, A. and Risuleo, G. (2002) Molecular Characterization and Action of Usnic Acid: A Drug That Inhibits Proliferation of Mouse Polyomavirus in Vitro and Its Main Target Is RNA Transcription. Biochimie, 84, 329-334.
http://dx.doi.org/10.1016/S0300-9084(02)01386-X
[56] Norkin, L.C. (1977) Cell Killing by Simian Virus 40: Impairment of Membrane Formation and Function. Journal of Virology, 21, 872-879.
[57] Drachenberg, C.B., Papadimitriou, J.C., Wali, R., Cubitt, C.L. and Ramos, E. (2003) BK Polyoma Virus Allograft Nephropathy: Ultrastructural Features from Viral Cell Entry to Lysis. American Journal of Transplantation, 3, 1383-1392.
http://dx.doi.org/10.1046/j.1600-6135.2003.00237.x
[58] Damm, E.M. and Pelkmans, L. (2006) Systems Biology of Virus Entry in Mammalian Cells. Cell Microbiology, 8, 1219-1227.
http://dx.doi.org/10.1111/j.1462-5822.2006.00745.x
[59] Hosoda, R., Kuno, A., Hori, Y.S., Ohtani, K., Wakamiya, N., Oohiro, A., Hamada, H. and Horio, Y. (2013) Differential Cell-Protective Function of Two Resveratrol(Trans-3,5,4’-trihydroxystilbene) Glucosides against Oxidative Stress. Journal of Pharmacological and Experimental Therapy, 344, 124-132.
http://dx.doi.org/10.1124/jpet.112.198937
[60] Biswas, S., Hwang, J.W., Kirkham, P.A. and Rahman, I. (2012) Pharmacologial and Dietary Antioxidant Therapies for Chronic Obstructive Pulmonary Disease. Current Medical Chemistry, 20, 1496-1530.
[61] Li, X.Z., Wei, X., Zhang, C.J., Jin, X.L., Tang, J.J., Fan, G.J. and Zhou, B. (2012) Hypohalous Acid-Mediated Halogenation of Resveratrol and Its Role in Antioxidant and Antimicrobial Activities. Food Chemistry, 135, 1239-1244.
http://dx.doi.org/10.1016/j.foodchem.2012.05.043
[62] Ding, D.J., Cao, X.Y., Dai, F., Li, X.Z., Liu, G.Y., Lin, D., Fu, X., Jin, X.L. and Zhou, B. (2012) Synthesis and Antioxidant Activity of Hydroxylated Phenanthrenes as Cis-Restricted Resveratrol Analogues. Food Chemistry, 135, 1011-1009.
http://dx.doi.org/10.1016/j.foodchem.2012.05.074
[63] Olas, B., Zbikowska, H.M., Wachowicz, B., Krajewski, T., Buczynski, A. and Magnuszewska, A. (1999) Inhibitory Effect of Resveratrol on Free Radical Generation in Blood Platelets. Acta Biochimica Polonica, 46, 961-966.
[64] Faith, S.A., Sweet, T.J., Bailey, E., Booth, T. and Docherty, J.J. (2006) Resveratrol Suppresses Nuclear Factor-κB in Herpes Simplex Virus Infected Cells. Antiviral Research, 72, 242-251.
http://dx.doi.org/10.1016/j.antiviral.2006.06.011
[65] Palamara, A.T., Nencioni, L., Aquilano, K., De Chiara, G., Hernandez, L., Cozzolino, F., Ciriolo, M.R. and Garaci, E. (2005) Inhibition of Influenza A Virus Replication by Resveratrol. Journal of Infectious Diseases, 191, 1719-1729.
http://dx.doi.org/10.1086/429694
[66] Docherty, J.J., Sweet, T.J., Bailey, E., Faith, S.A. and Booth, T. (2006) Resveratrol Inhibition of Varicella-Zoster Virus Replication in Vitro. Antiviral Research, 72, 171-177.
http://dx.doi.org/10.1016/j.antiviral.2006.07.004
[67] Clouser, C.L., Chauhan, J., Bess, M.A., Oploo, J.L., Zhou, D., Dimick-Gray, S., Mansky, L.M. and Patterson, S.E. (2012) Anti-HIV-1 Activity of Resveratrol Derivatives and Synergistic Inhibition of HIV-1 by the Combination of Resveratrol and Decitabine. Bioorganic Medical Chemistry Letters, 22, 6642-6646.
http://dx.doi.org/10.1016/j.bmcl.2012.08.108
[68] De Leo, A., Arena, G., Lacanna, E., Oliviero, G., Colavita, F. and Mattia, E. (2012) Resveratrol Inhibits Epstein Barr Virus Lytic Cycle in Burkitt’s Lymphoma Cells by Affecting Multiple Molecular Targets. Antiviral Research, 15, 196-202.
http://dx.doi.org/10.1016/j.antiviral.2012.09.003
[69] Campagna, M. and Rivas, C. (2010) Antiviral Activity of Resveratrol. Biochemical Society Transactions, 38, 50-53.
http://dx.doi.org/10.1042/BST0380050
[70] Saiko, P., Pemberger, M., Horvath, Z., Savinc, I., Grusch, M., Handler, N., Erker, T., Jaeger, W., Fritzer-Szekeres, M. and Szekeres, T. (2008) Novel Resveratrol Analogs Induce Apoptosis and Cause Cell Cycle Arrest in HT29 Human Colon Cancer Cells: Inhibition of Ribonucleotide Reductase Activity. Oncology Reports, 19, 1621-1626.
[71] Juan, M.E., Wenzel, U., Daniel, H. and Planas, J.M. (2008) Resveratrol Induces Apoptosis through ROS-Dependent Mitochondria Pathway in HT-29 Human Colorectal Carcinoma Cells. Journal of Agricultural and Food Chemistry, 56, 4813-4818.
http://dx.doi.org/10.1021/jf800175a
[72] Singh, M. and Singh, N. (2009) Molecular Mechanism of Curcumin Induced Cytotoxicity in Human Cervical Carcinoma Cells. Molecular and Cellular Biochemistry, 325, 107-119.
http://dx.doi.org/10.1007/s11010-009-0025-5
[73] Xu, Q. and Si, L.Y. (2012) Resveratrol Role in Cardiovascular and Metabolic Health and Potential Mechanisms of Action. Nutrition Research, 32, 648-658.
http://dx.doi.org/10.1016/j.nutres.2012.07.002
[74] Samad, A., Sultana, Y. and Aqil, M. (2007) Liposomal Drug Delivery Systems: An Update Review. Current Drug Delivery, 4, 297-305.
http://dx.doi.org/10.2174/156720107782151269
[75] Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Ringold, G.M. and Danielsen, M. (1987) Lipofection: A Highly Efficient, Lipid-Mediated DNA-Transfection Procedure. Proceedings of the National Academy of Sciences of the United States of America, 84, 7413-7417.
http://dx.doi.org/10.1073/pnas.84.21.7413
[76] Dass, C.R. and Choong, P.F.M. (2006) Targeting of Small Molecule Anticancer Drugs to the Tumour and Its Vasculature Using Cationic Liposomes: Lesson from Gene Therapy. Cancer Cell International, 6, 17.
[77] Dass, C.R. (2003) Improving Anti-Angiogenic Therapy via Selective Delivery of Cationic Liposomes to Tumour Vasculature. International Journal of Pharmacology, 267, 1-12.
[78] Lasic, D.D. (1996) Liposomes in Drug Delivery. In: Rosoff, M., Ed., Vesicles, Marcel Dekker, New York, 447-476.
[79] Allen, T.M., Austin, G.A., Chonn, A., Lin, L. and Lee, K.C. (1991) Uptake of Liposomes by Cultured Mouse Bone Marrow Macrophages: Influence of Liposome Composition and Size. Biochimica Biophysica Acta—Biomembranes, 1061, 56-64.
[80] Heath, T.D., Lopez, N.G. and Papahadjopoulos, D. (1985) The Effects of Liposome Size and Surface Charge on Liposome-Mediated Delivery of Methotrexate-Gamma-Aspartate to Cells in Vitro. Biochimica Biophysica Acta, 820, 74-84.
http://dx.doi.org/10.1016/0005-2736(85)90217-2
[81] Bareford, L.M. and Swaan, P.W. (2007) Endocytic Mechanisms for Targeted Drug Delivery. Advances in Drug Delivery Reviews, 59, 748-758.
http://dx.doi.org/10.1016/j.addr.2007.06.008
[82] Pauly, H. and Schwan, H.P. (1959) The Impedance of a Suspension of Spherical Particles Surrounded by a Shell. Zeitschrift Naturforschung, 14b, 125-131.
[83] Asami, K., Takahashi, Y. and Takashima, S. (1989) Dielectric Properties of Mouse Lymphocytes and Erythrocytes. Biochimica et Biophysica Acta, 1010, 49-55.
http://dx.doi.org/10.1016/0167-4889(89)90183-3
[84] Marina-Garcia, N., Franchi, L., Kim, Y.G., Hu, Y., Smith, D.E., Boons, G.-J. and Nunez, G. (2009) Clathrin and Dynamin-Dependent Endocytic Pathway Regulates Muramyl Dipeptide Internalization and NOD2 Activation. Journal of Immunology, 182, 4321-4327.
http://dx.doi.org/10.4049/jimmunol.0802197
[85] Long, G., Pan, X., Kormelink, R. and Vlak, J.M. (2006) Functional Entry of Baculovirus into Insect and Mammalian Cells Is Dependent on Clathrin-Mediated Endocytosis. Journal of Virology, 80, 8830-8833.
http://dx.doi.org/10.1128/JVI.00880-06
[86] Inoue, Y., Tanaka, N., Tanaka, Y., Inoue, S., Morita, K., Zhuang, M., Hattori, T. and Sugamura, K. (2007) Clathrin-Dependent Entry of Severe Acute Respiratory Syndrome Coronavirus into Target Cells Expressing ACE2 with the Cytoplasmic Tail Deleted. Journal of Virology, 281, 8720-8729.