[1] Krappinger, D., Bizzotto, N., Riedmann, S., Kammerlander, C., Hengg, C. and Kralinger, F.S. (2011) Predicting Failure after Surgical Fixation of Proximal Humerus Fractures. Injury, 42, 1283-1288.
http://dx.doi.org/10.1016/j.injury.2011.01.017
[2] Adams, C.I., Robinson, C.M., Court-Brown, C.M. and McQueen, M.M. (2001) Prospective Randomized Controlled Trial of an Intramedullary Nail versus Dynamic Screw and Plate for Intertrochanteric Fractures of the Femur. Journal of Orthopaedic Trauma, 15, 394-400.
http://dx.doi.org/10.1097/00005131-200108000-00003
[3] Basler, S.E., Traxler, J., Müller, R. and van Lenthe, G.H. (2013) Peri-Implant Bone Microstructure Determines Dynamic Implant Cut-Out. Medical Engineering & Physics, 35, 1442-1449.
http://dx.doi.org/10.1016/j.medengphy.2013.03.016
[4] Windolf, M., Braunstein, V., Dutoit, C. and Schwieger, K. (2009) Is a Helical Shaped Implant a Superior Alternative to the Dynamic Hip Screw for Unstable Femoral Neck Fractures? A Biomechanical Investigation. Clinical Biomechanics, 24, 59-64. http://dx.doi.org/10.1016/j.clinbiomech.2008.07.004
[5] Fakler, J.K.M., Hogan, C., Heyde, C.E. and John, T. (2008) Current Concepts in the Treatment of Proximal Humeral Fractures. Orthopedics, 31, 42-51. http://dx.doi.org/10.3928/01477447-20080101-13
[6] Dhert, W.J., Thomsen, P., Blomgren, A.K., Esposito, M., Ericson, L.E. and Verbout, A.J. (1998) Integration of Press- Fit Implants in Cortical Bone: A Study on Interface Kinetics. Journal of Biomedical Materials Research, 41, 574-583.
http://dx.doi.org/10.1002/(SICI)1097-4636(19980915)41:4<574::AID-JBM9>3.0.CO;2-9
[7] Slaets, E., Carmeliet, G., Naert, I. and Duyck, J. (2006) Early Cellular Responses in Cortical Bone Healing around Unloaded Titanium Implants: An Animal Study. Journal of Periodontology, 77, 1015-1024.
http://dx.doi.org/10.1902/jop.2006.050196
[8] Heimann, R.B. (2013) Structure, Properties, and Biomedical Performance of Osteoconductive Bioceramic Coatings. Surface and Coatings Technology, 233, 27-38.
http://dx.doi.org/10.1016/j.surfcoat.2012.11.013
[9] Moroni, A., Caja, V.L., Egger, E.L., Trinchese, L. and Chao, E.Y. (1994) Histomorphometry of Hydroxyapatite Coated and Uncoated Porous Titanium Bone Implants. Biomaterials, 15, 926-930.
http://dx.doi.org/10.1016/0142-9612(94)90119-8
[10] Kusakabe, H., Sakamaki, T., Nihei, K., Oyama, Y., Yanagimoto, S., Ichimiya, M., et al. (2004) Osseointegration of a Hydroxyapatite-Coated Multilayered Mesh Stem. Biomaterials, 25, 2957-2969.
http://dx.doi.org/10.1016/j.biomaterials.2003.09.090
[11] Hasegawa, M., Sudo, A., Komlev, V.S., Barinov, S.M. and Uchida, A. (2004) High Release of Antibiotic from a Novel Hydroxyapatite with Bimodal Pore Size Distribution. Journal of Biomedical Materials Research, 70, 332-339.
http://dx.doi.org/10.1002/jbm.b.30047
[12] Sörensen, T.C., Arnoldi, J., Procter, P., Beimel, C., Jönsson, A., Lennerås, M., et al. (2013) Locally Enhanced Early Bone Formation of Zoledronic Acid Incorporated into a Bone Cement Plug in Vivo. Journal of Pharmacy and Pharmacology, 65, 201-212.
http://dx.doi.org/10.1111/j.2042-7158.2012.01588.x
[13] Forsgren, J., Brohede, U., Piscounova, S., Mihranyan, A., Larsson, S., StrØmme, M., et al. (2011) In Vivo Evaluation of Functionalized Biomimetic Hydroxyapatite for Local Delivery of Active Agents. Journal of Biomaterials and Nanobiotechnology, 2, 149-154.
http://dx.doi.org/10.4236/jbnb.2011.22019
[14] Larsson, S. and Procter, P. (2011) Optimising Implant Anchorage (Augmentation) during Fixation of Osteoporotic Fractures: Is There a Role for Bone-Graft Substitutes? Injury, 42, S72-S76.
http://dx.doi.org/10.1016/j.injury.2011.06.019
[15] Baker, K., Anderson, M., Oehlke, S., Astashkina, A., Haikio, D., Drelich, J., et al. (2006) Growth, Characterization and Biocompatibility of Bone-Like Calcium Phosphate Layers Biomimetically Deposited on Metallic Substrata. Materials Science and Engineering: C, 26, 1351-1360. http://dx.doi.org/10.1016/j.msec.2005.08.015
[16] Allegrini, S., Rumpel, E., Kauschke, E., Fanghänel, J. and König, B. (2006) Hydroxyapatite Grafting Promotes New Bone Formation and Osseointegration of Smooth Titanium Implants. Annals of Anatomy—Anatomischer Anzeiger, 188, 143-151. http://dx.doi.org/10.1016/j.aanat.2005.08.019
[17] Alt, V., Bitschnau, A., Böhner, F., Heerich, K.E., Magesin, E., Sewing, A., et al. (2011) Effects of Gentamicin and Gentamicin-RGD Coatings on Bone Ingrowth and Biocompatibility of Cementless Joint Prostheses: An Experimental Study in Rabbits. Acta Biomaterialia, 7, 1274-1280. http://dx.doi.org/10.1016/j.actbio.2010.11.012
[18] Cao, N., Dong, J., Wang, Q., Ma, Q., Xue, C. and Li, M. (2010) An Experimental Bone Defect Healing with Hydroxyapatite Coating Plasma Sprayed on Carbon/Carbon Composite Implants. Surface and Coatings Technology, 205, 1150-1156. http://dx.doi.org/10.1016/j.surfcoat.2010.05.008
[19] Sörensen, T.C., Arnoldi, J., Procter, P., Robioneck, B. and Steckel, H. (2013) Bone Substitute Materials Delivering Zoledronic Acid: Physicochemical Characterization, Drug Load, and Release Properties. Journal of Biomaterials Applications, 27, 727-738. http://dx.doi.org/10.1177/0885328211424623
[20] Xue, W., Tao, S., Liu, X., Zheng, X. and Ding, C. (2004) In Vivo Evaluation of Plasma Sprayed Hydroxyapatite Coatings Having Different Crystallinity. Biomaterials, 25, 415-421. http://dx.doi.org/10.1016/S0142-9612(03)00545-3
[21] Zhang, H. and Darvell, B.W. (2011) Morphology and Structural Characteristics of Hydroxyapatite Whiskers: Effect of the Initial Ca Concentration, Ca/P Ratio and pH. Acta Biomaterialia, 7, 2960-2968.
http://dx.doi.org/10.1016/j.actbio.2011.03.020
[22] Wang, P., Li, C., Gong, H., Jiang, X., Wang, H. and Li, K. (2010) Effects of Synthesis Conditions on the Morphology of Hydroxyapatite Nanoparticles Produced by Wet Chemical Process. Powder Technology, 203, 315-321.
http://dx.doi.org/10.1016/j.powtec.2010.05.023
[23] Mihranyan, A., Forsgren, J., StrØmme, M. and Engqvist, H. (2009) Assessing Surface Area Evolution during Biomimetic Growth of Hydroxyapatite Coatings. Langmuir, 25, 1292-1295.
http://dx.doi.org/10.1021/la803520k
[24] Brohede, U., Zhao, S., Lindberg, F., Mihranyan, A., Forsgren, J., StrØmme, M., et al. (2009) A Novel Graded Bioactive High Adhesion Implant Coating. Applied Surface Science, 255, 7723-7728.
http://dx.doi.org/10.1016/j.apsusc.2009.04.149
[25] Brohede, U., Forsgren, J., Roos, S., Mihranyan, A., Engqvist, H. and StrØmme, M. (2009) Multifunctional Implant Coatings Providing Possibilities for Fast Antibiotics Loading with Subsequent Slow Release. Journal of Materials Science: Materials in Medicine, 20, 1859-1867.
http://dx.doi.org/10.1007/s10856-009-3749-6
[26] Forsgren, J., Svahn, F., Jarmar, T. and Engqvist, H. (2007) Formation and Adhesion of Biomimetic Hydroxyapatite Deposited on Titanium Substrates. Acta Biomaterialia, 3, 980-984.
http://dx.doi.org/10.1016/j.actbio.2007.03.006
[27] Ma, J., Wang, C. and Peng, K. (2003) Electrophoretic Deposition of Porous Hydroxyapatite Scaffold. Biomaterials, 24, 3505-3510. http://dx.doi.org/10.1016/S0142-9612(03)00203-5
[28] Liu, D.M., Troczynski, T. and Tseng, W.J. (2001) Water-Based Sol-Gel Synthesis of Hydroxyapatite: Process Development. Biomaterials, 22, 1721-1730.
http://dx.doi.org/10.1016/S0142-9612(00)00332-X
[29] Shapiro, S.S. and Wilk, M.B. (1965) An Analysis of Variance Test for Normality Complete Samples. Biometrika, 52, 591-611. http://dx.doi.org/10.1093/biomet/52.3-4.591
[30] Seebeck, J., Goldhahn, J., Morlock, M.M. and Schneider, E. (2005) Mechanical Behavior of Screws in Normal and Osteoporotic Bone. Osteoporosis International, 16, S107-S111.
http://dx.doi.org/10.1007/s00198-004-1777-0
[31] Moroni, A., Faldini, C., Marchetti, S., Manca, M., Consoli, V. and Giannini, S. (2001) Improvement of the Bone-Pin Interface Strength in Osteoporotic Bone with Use of Hydroxyapatite-Coated Tapered External-Fixation Pins. A Prospective, Randomized Clinical Study of Wrist Fractures. Journal of Bone and Joint Surgery (American Volume), 83, 717-721.
[32] Caja, V.L. and Moroni, A. (1996) Hydroxyapatite Coated External Fixation Pins: An Experimental Study. Clinical Orthopaedics and Related Research, 325, 269-275.
http://dx.doi.org/10.1097/00003086-199604000-00033
[33] Shepperd, J.A.N. and Apthorp, H. (2005) A Contemporary Snapshot of the Use of Hydroxyapatite Coating in Orthopaedic Surgery. Journal of Bone and Joint Surgery (British Volume), 87, 1046-1049.
http://dx.doi.org/10.1302/0301-620X.87B8.16692
[34] Piza, G., Caja, V.L., Gonzalez-Viejo, M.A. and Navarro, A. (2004) Hydroxyapatite-Coated External-Fixation Pins. The Effect on Pin Loosening and Pin-Track Infection in Leg Lengthening for Short Stature. Journal of Bone and Joint Surgery (British Volume), 86, 892-897.
[35] Magyar, G., Toksvig-Larsen, S. and Moroni, A. (1997) Hydroxyapatite Coating of Threaded Pins Enhances Fixation. Journal of Bone and Joint Surgery (British Volume), 79, 487-489. http://dx.doi.org/10.1302/0301-620X.79B3.7190
[36] Yang, G., He, F., Yang, X., Wang, X. and Zhao, S. (2008) Bone Responses to Titanium Implants Surface-Roughened by Sandblasted and Double Etched Treatments in a Rabbit Model. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 106, 516-524. http://dx.doi.org/10.1016/j.tripleo.2008.03.017
[37] Yang, G., He, F., Hu, J., Wang, X. and Zhao, S. (2009) Effects of Biomimetically and Electrochemically Deposited Nano-Hydroxyapatite Coatings on Osseointegration of Porous Titanium Implants. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 107, 782-789. http://dx.doi.org/10.1016/j.tripleo.2008.12.023
[38] Zhang, E. and Zou, C. (2009) Porous Titanium and Silicon-Substituted Hydroxyapatite Biomodification Prepared by a Biomimetic Process: Characterization and in Vivo Evaluation. Acta Biomaterialia, 5, 1732-1741.
http://dx.doi.org/10.1016/j.actbio.2009.01.014
[39] Eom, T., Jeon, G., Jeong, C., Kim, Y., Kim, S., Cho, I., et al. (2012) Experimental Study of Bone Response to Hydroxyapatite Coating Implants: Bone-Implant Contact and Removal Torque Test. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 114, 411-418. http://dx.doi.org/10.1016/j.oooo.2011.10.036
[40] Esposito, M., Hirsch, J.M., Lekholm, U. and Thomsen, P. (1998) Biological Factors Contributing to Failures of Osseointegrated Oral Implants. (I). Success Criteria and Epidemiology. European Journal of Oral Sciences, 106, 527-551.
http://dx.doi.org/10.1046/j.0909-8836..t01-2-.x
[41] Yildirim, O., Aksakal, B., Celik, H., Vangolu, Y. and Okur, A. (2005) An Investigation of the Effects of Hydroxyapatite Coatings on the Fixation Strength of Cortical Screws. Medical Engineering & Physics, 27, 221-228.
http://dx.doi.org/10.1016/j.medengphy.2004.10.006
[42] Pieske, O., Kaltenhauser, F., Pichlmaier, L., Schramm, N., Trentzsch, H., L?ffler, T., et al. (2010) Clinical Benefit of Hydroxyapatite-Coated Pins Compared with Stainless Steel Pins in External Fixation at the Wrist: A Randomised Prospective Study. Injury, 41, 1031-1036. http://dx.doi.org/10.1016/j.injury.2010.03.030
[43] Sennerby, L., Thomsen, P. and Ericson, L. (1993) Early Tissue Response to Titanium Implants Inserted in Rabbit Cortical Bone. Journal of Materials Science: Materials in Medicine, 4, 240-250. http://dx.doi.org/10.1007/BF00122275
[44] Roshan-Ghias, A., Arnoldi, J., Procter, P. and Pioletti, D.P. (2011) In Vivo Assessment of Local Effects after Application of Bone Screws Delivering Bisphosphonates into a Compromised Cancellous Bone Site. Clinical Biomechanics, 26, 1039-1043. http://dx.doi.org/10.1016/j.clinbiomech.2011.06.004
[45] Mittal, M., Nath, S. and Prakash, S. (2011) Splat Formation and Degradation of Hydroxyapatite during Plasma Spraying Process. Advances in Materials Sciences, 11, 26-36.
[46] Rigo, E., Boschi, A., Yoshimoto, M., Allegrini, S., Konig, B. and Carbonari, M. (2004) Evaluation in Vitro and in Vivo of Biomimetic Hydroxyapatite Coated on Titanium Dental Implants. Materials Science and Engineering: C, 24, 647- 651. http://dx.doi.org/10.1016/j.msec.2004.08.044
[47] Lilja, M., Sörensen, J.H., Sörensen, T.C., Åstrand, M., Procter, P., Steckel, H., et al. (2013) Impact of Biomechanical Forces on Antibiotics Release Kinetics from Hydroxyapatite Coated Surgical Fixation Pins. Journal of Biomaterials and Nanobiotechnology, 4, 343-350.
http://dx.doi.org/10.4236/jbnb.2013.44043
[48] Sörensen, J.H., Lilja, M., Sörensen, T.C., Astrand, M., Procter, P., Fuchs, S., et al. (2014) Biomechanical and Antibacterial Properties of Tobramycin Loaded Hydroxyapatite Coated Fixation Pins. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102, 1381-1392. http://dx.doi.org/10.1002/jbm.b.33117
[49] Chan, S., Neu, C., Komvopoulos, K. and Reddi, A. (2011) The Role of Lubricant Entrapment at Biological Interfaces: Reduction of Friction and Adhesion in Articular Cartilage. Journal of Biomechanics, 44, 2015-2020.
http://dx.doi.org/10.1016/j.jbiomech.2011.04.015
[50] Peter, B., Pioletti, D.P., Laib, S., Bujoli, B., Pilet, P., Janvier, P., et al. (2005) Calcium Phosphate Drug Delivery System: Influence of Local Zoledronate Release on Bone Implant Osteointegration. Bone, 36, 52-60.
http://dx.doi.org/10.1016/j.bone.2004.10.004
[51] Wermelin, K., Suska, F., Tengvall, P., Thomsen, P. and Aspenberg, P. (2008) Stainless Steel Screws Coated with Bisphosphonates Gave Stronger Fixation and More Surrounding Bone. Histomorphometry in Rats. Bone, 42, 365-371.
http://dx.doi.org/10.1016/j.bone.2007.10.013