AJPS  Vol.5 No.26 , December 2014
Identification of Alkaloid’s Profile in Ficus benjamina L. Extracts with Higher Antioxidant Power
Abstract: Different classes of known alkaloid compounds were identified for the first time in leaves and barks of Ficus benjamina L. from Moraceae family. The identification of 28 alkaloids in F. benjamina leaves and 14 alkaloids in its barks was identified using chromatographic analysis as Gas Chromatography associated to Mass Spectrometry (GC-MS). This characterization analysis allows to verifying the presence of different alkaloids type-classes in both leaves and barks, such as isoquinoline class, indole class and quinolizidine class. The quantification results are deduced by analysis with spectrophotometric assay, using a calibration curve of boldine as standard alkaloid that reveals the presence of 26 ± 0.1 μg of alkaloids boldine equivalent in 1 gram of F. benjamina leaves and 3.8 ± 0.1 μg alkaloids boldine equivalent in 1 gram of its barks. A significant correlation was observed between the total alkaloid content of crude extracts and 2,2-diphenyl-1-picrylhydrazyl assay (DPPH), suggesting that the level of antioxidant activity in this species is strongly correlated to the alkaloid content. These findings should provide useful information for future on the pharmaceutical properties of these alkaloids from F. benjamina.
Cite this paper: Novelli, S. , Lorena, C. and Antonella, C. (2014) Identification of Alkaloid’s Profile in Ficus benjamina L. Extracts with Higher Antioxidant Power. American Journal of Plant Sciences, 5, 4029-4039. doi: 10.4236/ajps.2014.526421.

[1]   Acharya, D. and Shrivastava, A. (2008) Indigenous Herbal Medicine: Tribal Formulations and Traditional Herbal Practices. 1st Edition, Avishkar Publishers, Jaipur.

[2]   Aniszewski, T. (2007) Alkaloids—Secrets of Life Alkaloids Chemistry, Biological Significance Application and Ecological Role. 1st Edition, Elsevier, Amsterdam.

[3]   Podsedek, A. (2007) Natural Antioxidants and Antioxidant Capacity of Brassica Vegetables: A Review. Food Science and Technology, 40, 1-11.

[4]   Maestri, D.M., Nepote, V., Lamarque, A.L. and Zygadlo, J.A. (2006) Natural Products as Antioxidants. In: Trivandrum, I.F., Ed., Phytochemistry: Advances in Research, Research Signpost, Córdoba, 105-135.

[5]   Dang, S., Yan, H., Yamamoto, S., Wang, X. and Zeng, L. (2004) Poor Nutritional Status of Younger Tibetan Children Living at High Altitudes. European Journal of Clinical Nutrition, 58, 938-946.

[6]   Chaurasia, O.P., Ballabh, B. and Singh, B. (2003) Himalayan Rose Root, Rhodiola spp. Potential Health Drink and Drug Plant. Natural Product Radiance, 2, 71-92.

[7]   Ali, R., Jaimini, A., Nishad, D.K., Mittal, G., Chaurasia, O.P., Kumar, R., Bhatnagar, A. and Singh, S.B. (2012) Acute and Sub Acute Toxicity and Efficacy Studies of Hippophaerhamnoides Based Herbal Antioxidant Supplement. Indian Journal of Pharmacology, 44, 504-508.

[8]   Hegedus, A., Engel, R., Abrankó, L., Balogh, E., Blázovics, A., Hermán, R., Halász, J., Ercisli, S., Pedryc, A. and Stefanovits-Bányai, é. (2010) Antioxidant and Antiradical Capacities in Apricot (Prunus armeniaca L.) Fruits: Variations from Genotypes, Years, and Analytical Methods. Journal of Food Science, 75, 722-730.

[9]   Yadav, A., Stobdan, T., Dwivedi, S.K., Korekar, G., Targais, K. and Srivastava, R.B. (2011) Apricot (Prunus armeniaca L.) for Livelihood Security in Cold Deserts. In: Srivastava, R.B. and Selvamurthy, W., Eds., Innovations in Agro Animal Technologies, Satish Serial Publishing House, Delhi, 87-97.

[10]   Chaurasia, O.P., Hota, S.K., Kumar, R., Tayade, A.B. and Srivastava, R.B. (2011) Trans-Himalayan Medicinal Plants and Herbal Nutraceutical Products. In: Srivastava, R.B. and Selvamurthy, W., Eds., Innovations in Agro Animal Technologies, Satish Serial Publishing House, Delhi, 113-129.

[11]   Kala, C.P. (2006) Medicinal Plants of the High Altitude Cold Desert in India: Diversity, Distribution and Traditional Uses. International Journal of Biodiversity Science & Management, 2, 43-56.

[12]   Chaurasia, O.P., Ahmed, Z. and Ballabh, B. (2007) Ethnobotany and Plants of Trans-Himalaya. Satish Serial Publishing House, Delhi.

[13]   Liyana-Pathiranan, C.M. and Shahidi, F. (2005) Antioxidant Activity of Commercial Soft and Hard Wheat (Triticum aestivum L.) as Affected by Gastric pH Conditions. Journal of Agricultural and Food Chemistry, 53, 2433-2440.

[14]   Lansky, E.P., Paavilainen, H.M., Pawlus, A.D. and Newman, R.A. (2008) Ficus spp. (fig): Ethnobotany and Potential as Anticancer and Anti-Inflammatory Agents. Journal of Ethnopharmacology, 119, 195-213.

[15]   Baumgartner, B., Erdelmeier, C.A.J., Wright, A.D., Rali, T. and Sticher, O. (1990) An Antimicrobial Alkaloid from Ficusseptica. Phytochemistry, 29, 3227-3330.

[16]   Mohammad, H., Sutradhar, M.A. and Ranjrr, K. (1991) Chemical Constituents of Ficus glomerata Roxb. Journal of the Bangladesh Chemical Society, 4, 247-250.

[17]   Khan, I.A., Rali, T. and Sticher, O. (1993) Alkaloids from Ficus pachyrhachis. Planta Medica, 59, 286.

[18]   Ilyas, M. and Ilyas, N. (1990) Flavonoids from the Leaves of Ficus capensis. Ghana Journal of Chemistry, 1, 176-178.

[19]   Frith, H.J., Rome, F.H.J. and Wolfe, T.O. (1976) Food of Fruit-Pigeons in New Guinea. Emu, 76, 49-58.

[20]   Almahyl, H.A., Rahmani, M., Sukarp, M.A. and Ali, A.M. (2003) Investigation on the Chemical Constituents of the Leaves of Ficus elastica Roxb. and Their Antimicrobial Activity. Pertanika Journal of Science & Technology, 11, 57-63.

[21]   Parajuli, S.P. (2000) Ethnobotanical Studies of at Khandbarimuncipilty of Sankhuwasabha. BankoJanakari, 10, 29-34.

[22]   Sirisha, N., Sreenivasulu, M., Sangeeta, K. and Chetty, C.M. (2010) Antioxidant Properties of Ficus Species: A Review. International Journal of PharmTech Research, 4, 2174-2182.

[23]   Kanaujia, V.K., Rirchhaiya, H.K., Kailasiya, S.D., Verma, M., Yadav, R.D. and Shivhare, D. (2011) Evaluation of Hepatoprotective Activity on the Leaves of Ficus benjamina Linn. Journal of Natural Product & Plant Resources, 1, 59-69.

[24]   Dai, J., Shen, D., Yoshida, W.Y., Parrish, S.M. and Williams, P.G. (2012) Isoflavonoids from Ficus benjamina and Their Inhibitory Activity on BACE1. Planta Medica, 78, 1357-1362.

[25]   Angelo, G., Lorena, C., Marta, G. and Antonella, C. (2014) Biochemical Composition and Antioxidant Properties of Lavandula angustifolia Miller Essential Oil Are Shielded by Propolis against UV Radiations. Photochemistry and Photobiology, 90, 702-708.

[26]   Shamsa, F., Monsef, H., Ghamooshi, R. and Verdian-rizi, M. (2008) Spectrophotometric Determination of Total Alkaloids in Some Iranian Medicinal Plant. Thai Journal of Pharmaceutical Sciences, 32, 17-20.

[27]   Esmaeili, A.H., Moghaddam, A.H. and Chaichi, M.J. (2013) Identification, Determination, and Study of Antioxidative Activities of Hesperetin and Gallic Acid in Hydro-Alcoholic Extract from Flowers of Eriobotrya japonica L. Avicenna Journal of Phytomedicine, 4, 260-266.

[28]   Wong, S.K., Lim, Y.Y., Abdullah, N.R. and Nordin, F.J. (2011) Antiproliferative and Phytochemical Analyses of Leaf Extracts of Ten Apocynaceae Species. Pharmacognosy Research, 3, 100-106.

[29]   Piana, M., Boligon, A.A., Brum, T.F., Zadra, M., Belke, B.V., Froeder, A.L., Frohlich, J.K., Nunes, L.T., Pappis, L., Boligon, A.A. and Athayde, M.L. (2014) Phytochemical Analysis and Antioxidant Capacity of Tabernaemontana catharinensis A. D.C. Fruits and Branches. Anais da Academia Brasileira de Ciências, Epub Ahead of Print.

[30]   Chow, Y. and Sato, F. (2013) Screening of Isoquinoline Alkaloids for Potent Lipid Metabolism Modulation with Caenorhabditis elagans. Bioscience, Biotechnology, and Biochemistry, 77, 2405-2412.

[31]   Yi, L., Liang, Z.T., Peng, Y., Yao, X., Chen, H.B. and Zhao, Z.Z. (2012) Tissue-Specific Metabolite Profiling of Alkaloids in Sinomenii Caulis Using Laser Microdissection and Liquid Chromatography-Quadruple/Time of Flight-Mass Spectrometry. Journal of Chromatography A, 1248, 93-103.

[32]   Kupeli, E., Koçar, M., Yesilada, E. and Baser, K.H.C. (2002) A Comparative Study on the Anti-Inflammatory, Antinociceptive and Antipyretic Effects of Isoquinoline Alkaloids from the Roots of Turkish Berberis Species. Life Sciences, 72, 645-657.

[33]   Taylor-Clarke, T.E., Undem, B.J., Macglashan, D.W., Ghatta, S., Carr, M.J. and McAlexander, M.A. (2007) Prostaglandin-Induced Activation of Nociceptive Neurons via Direct Interaction with Transient Receptor Potential A1 (TRPA1). Molecular Pharmacology, 73, 274-281.

[34]   Bao, M.M., Cao, Z.F., Yu, D., Fu, S.L., Zhang, G.C., Yang, P., Pan, Y.Y., Yang, B., Han, H.Y. and Zhou, Q.S. (2012) Columbamine Suppresses the Proliferation and Neovascularization of Metastatic Osteosarcoma U2OS Cells with Low Cytotoxicity. Toxicology Letters, 215, 174-180.

[35]   Chavez, L., Ponce, M.T., Bravo, G. and Pastelin, G. (1989) Pharmacological Study of Dopamine Catabolites on the Contractility of Isolated Guinea Pig Myocardium. Archivos del Instituto de Cardiología de México, 59, 367-373.

[36]   Kuznetsova, N.N., Abdullaeva, L.K. and Sadikov, A.A. (2005) Comparative Action of Salsoline, Salsolidine and Related Compounds on KML Tissue Culture and Animal Tumor Strains. Chemistry of Natural Compounds, 41, 234-235.

[37]   Yadav, D.K., Singh, N., Dev, K., Sharma, R., Sahai, M., Palit, G. and Maurya, R. (2010) Anti-Ulcer Constituents of Annona squamosal Twigs. Fitoterapia, 82, 666-675.

[38]   Wangchuck, P., Keller, P.A., Pyne, S.G., Wyllis, A.C. and Kamchonwongpaisan, S. (2012) Antimalarial Alkaloids from a Bhutanese Traditional Medicinal Plant Corydalis dubia. Journal of Ethnopharmacology, 143, 310-313.

[39]   Alexander, J., Benford, D., Cockburn, A., Cravedi, J.P., Dogliotti, E., Di Domenico, A., Férnandez-Cruz, M., Fürst, F., Fink-Gremmels, J., Galli, C.L., Grandjean, P., Gzyl, J., Heinemeyer, G., Johansson, N., Mutti, A., Schlatter, J., Van Leeuwen, R., Van Peteghem, C. and Verger, P. (2008) Tropane Alkaloids (from Datura sp.) as Undesirable Substances in Animal Feed. EFSA Journal, 691, 1-55.

[40]   Jacob III, P., Hatsukami, D., Severson, H., Hall, S., Yu, L. and Benowitz, N. (2002) Anabasine and Anatabine as Biomarkers for Tobacco Use during Nicotine Replacement Therapy. Cancer Epidemiology, Biomarkers & Prevention, 11, 1668-1673.

[41]   Hou, Y.Y., Cao, X.L., Wang, L.Q., Cheng, B.F., Dong, L.Y., Luo, X.D., Bai, G. and Gao, W.Y. (2012) Microfractionation Bioactivity-Based Ultra Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry for the Identification of Nuclear Factor-κB Inhibitors and β2 Adrenergic Receptor Agonists in an Alkaloidal Extract of the Folk Herb Alstonia scholaris. Journal of Chromatography, 908, 98-104.

[42]   Edwards, M.R., Bartlett, N.W., Clarke, D., Birrell, M., Belvisi, M. and Johnston, S.L. (2009) Targeting the NF-κB Pathway in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacology & Therapeutics, 121, 1-13.

[43]   Dias, K.L., Da Silva Dias, C., Barbosa-Filho, J.M., Almeida, R.N., De Azevedo Correia, N. and Medeiros, I.A. (2004) Cardiovascular Effects Induced by Reticuline in Normotensive Rats. Planta Medica, 70, 328-333.

[44]   Medeiros, M.A.A., Nunes, X.P., Barbosa-Filho, J.M., Lemos, V.S., Pinho, J.F., Roman-Campos, D., De Medeiros, I.A., Araújo, D.A.M. and Cruz, J.S. (2008) (S)-Reticuline Induces Vasorelxation through the Blockage of L-Type Ca2+ Channels. Naunyn-Schmiedeberg’s Archives of Pharmacology, 379, 115-125.

[45]   Cheng, P., Ma, Y., Yao, S., Zhang, Q., Wang, E., Yan, M., Zhang, X., Zhang, F. and Chen, J. (2007) Two New Alkaloids and Active Anti-Hepatitis B Virus Constituents from Hypserpa nitida. Bioorganic & Medicinal Chemistry Letters, 17, 5316-5320.

[46]   Elgorashi, E., Stafford, G.I. and Van Staden, J. (2004) Acetylcholinesterase Enzyme Inhibitory Effects of Amaryllidaceae Alkaloids. Planta Medica, 70, 260-262.

[47]   Verotta, L., Orsini, F., Sbacchi, M., Scheildler, M.A., Amador, T.A. and Elisabetsky, E. (2002) Synthesis and Antinociceptive Activity of Chimonanthines and Pyrrolidinoindoline-Type Alkaloids. Bioorganic & Medicinal Chemistry, 10, 2133-2142.