Back
 AM  Vol.2 No.6 , June 2011
On Riesz Mean Inequalities for Subelliptic Laplacian
Abstract: In this paper, we mainly focus on the Riesz means of eigenvalues of the subelliptic Laplacian on the Heisenberg group Hn. We establish a trace formula of associated eigenvalues, then we prove differential inequalities, difference inequalities and monotonicity formulas for the Riesz means of eigenvalues of the subelliptic Laplacian.
Cite this paper: nullG. Jia, J. Wang and Y. Xiong, "On Riesz Mean Inequalities for Subelliptic Laplacian," Applied Mathematics, Vol. 2 No. 6, 2011, pp. 694-698. doi: 10.4236/am.2011.26091.
References

[1]   G. N. Hile and M. H. Protter, “Inequalities for Eigenvalues of the Laplacian,” Indiana University Mathematics Journal, Vol. 29, No. 4, 1980, pp. 523-538. doi:10.1512/iumj.1980.29.29040

[2]   E. M. Harrell II and J. Stubbe, “On Trace Identities and Universal Eigenvalue Estimates for Some Partial Differential Operators,” Transactions of the American Mathematical Society, Vol. 349, No. 5, 1997, pp. 1797-1809. doi:10.1090/S0002-9947-97-01846-1

[3]   E. M. Harrell and L. Hermi, “Differential Inequalities for Riesz Means and Weyl-Type Bounds for Eigenvalues,” Journal of Functional Analysis, Vol. 254, No. 12, 2008, pp. 3173-3191. doi:10.1016/j.jfa.2008.02.016

[4]   A. El Soufi, E. M. Harrell and S. Ilias, “Universal Inequalities for the Eigenvalues of Laplace and Schr?inger Operators on Submanifolds,” American Mathematical Society, Providence, Vol. 361, 2009, pp. 2337-2350.

[5]   M. S. Ashbaugh and L. Hermi, “Universal Inequalities for Higher-Order Elliptic Operators,” Proceedings of the American Mathematical Society, Vol. 126, 1998 pp. 2623-2630. doi:10.1090/S0002-9939-98-04707-8

[6]   P. Lévy-Bruhl, “Résolubilité Locale et Globale d’Opérateurs Invariants du Second Ordre sur des Groupes de Lie Nilpotents,” Bulletin des Sciences Mathematiques, Vol. 104, 1980, pp. 369-391.

[7]   D. Müller and M. M. Peloso, “Non-Solvability for a Class of Left-Invariant Second-Order Differential Operators on the Heisenberg Group,” Transactions of the American Mathematical Society, Vol. 355, No. 5, 2003, pp. 2047- 2064. doi:10.1090/S0002-9947-02-03232-4

[8]   P. C. Niu and H. Q. Zhang, “Payne-Polya-Weinberge Type Inequalities for Eigenvalues of Nonelliptic Operators,” Pacific Journal of Mathematics, Vol. 208, No. 2, 2003, pp. 325-345. doi:10.2140/pjm.2003.208.325

[9]   G. Jia, “On Some Function Spaces and Variational Problems Related to the Heisenberg Group,” Ph.D. Thesis, 2003.

[10]   M. S. Ashbaugh and L. Hermi, “A Unified Approach to Universal Inequalities for Eigenvalues of Elliptic Operators,” Pacific Journal of Mathematics, Vol. 217, No. 2, 2004, pp. 201-220. doi:10.2140/pjm.2004.217.201

[11]   E. M. Harrell and L. Hermi, “On Riesz Means of Eigenvalues,” Eprint arXiv: 0712. 4088.

[12]   B. Helffer and D. Robert, “Riesz Means of Bounded States and Semi-Classical Limit Connected with a Lieb-Thirring Conjecture, II, Ann. Inst. H. Poincar,” Phys. Théor., Vol. 53, 1990, pp. 139-147

 
 
Top