AM  Vol.2 No.6 , June 2011
A Primal-Dual Simplex Algorithm for Solving Linear Programming Problems with Symmetric Trapezoidal Fuzzy Numbers
Author(s) Ali Ebrahimnejad
ABSTRACT
Two existing methods for solving a class of fuzzy linear programming (FLP) problems involving symmetric trapezoidal fuzzy numbers without converting them to crisp linear programming problems are the fuzzy primal simplex method proposed by Ganesan and Veeramani [1] and the fuzzy dual simplex method proposed by Ebrahimnejad and Nasseri [2]. The former method is not applicable when a primal basic feasible solution is not easily at hand and the later method needs to an initial dual basic feasible solution. In this paper, we develop a novel approach namely the primal-dual simplex algorithm to overcome mentioned shortcomings. A numerical example is given to illustrate the proposed approach.

Cite this paper
nullA. Ebrahimnejad, "A Primal-Dual Simplex Algorithm for Solving Linear Programming Problems with Symmetric Trapezoidal Fuzzy Numbers," Applied Mathematics, Vol. 2 No. 6, 2011, pp. 676-684. doi: 10.4236/am.2011.26089.
References
[1]   K. Ganesan and P. Veeramani, “Fuzzy Linear Programming with Trapezoidal Fuzzy Numbers,” Annals of Operations Research, Vol. 143, No. 1, 2006, pp. 305-315. doi:10.1007/s10479-006-7390-1

[2]   A. Ebrahimnejad and S. H. Nasseri, “Linear Programs with Trapezoidal Fuzzy Numbers: A Duality Approach,” International Journal of Operations Research (In press).

[3]   H. Tanaka and K. Asai, “Fuzzy Linear Programming Problems with Fuzzy Numbers,” Fuzzy Sets and Systems, Vol. 13, No. 1, 1984, pp. 1-10. doi:10.1016/0165-0114(84)90022-8

[4]   J. L. Verdegay, “A Dual Approach to Solve the Fuzzy Linear Programming Problems,” Fuzzy Sets and Systems, Vol. 14, No. 2, 1984, pp. 131-141. doi:10.1016/0165-0114(84)90096-4

[5]   H. J. Zimmermann, “Optimization in Fuzzy Environment,” Presented at XXI International TIMES and 46th ORSA Conference, San Juan, 8-11 July 1974.

[6]   A. Ebrahimnejad, S. H. Nasseri, F. H. Lotfi and M. Soltanifar, “A Primal-Dual Method for Linear Programming Problems with Fuzzy Variables,” European Journal of Industrial Engineering, Vol. 4, No. 2, 2010, pp. 189-209. doi:10.1504/EJIE.2010.031077

[7]   A. Ebrahimnejad, S. H. Nasseri and F. H. Lotfi, “Bounded Linear Programs with Trapezoidal Fuzzy Numbers,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 18, No. 3, 2010, pp. 269-286. doi:10.1142/S0218488510006532

[8]   A. Ebrahimnejad and S. H. Nasseri, “A Dual Simplex Method for Bounded Linear Programmes with Fuzzy Numbers,” International Journal of Mathematics in Operational Research, Vol. 2, No. 6, 2010, pp. 762-779. doi:10.1504/IJMOR.2010.035498

[9]   F. H. Lotfi, T. Allahviranloo, M. A. Jondabeh and L. Alizadeh, “Solving a Full Fuzzy Linear Programming Using Lexicography Method and Fuzzy Approximate Solution,” Applied Mathematical Modelling, Vol. 33, No. 7, 2009, pp. 3151-3156. doi:10.1016/j.apm.2008.10.020

[10]   M. Inuiguchi and M. Sakawa, “Possible and Necessary Optimality Tests in Possibilistic Linear Programming Problems,” Fuzzy Sets and Systems, Vol. 67, No. 1, 1994, pp. 29-46. doi:10.1016/0165-0114(94)90206-2

[11]   A. Kumar, J. Kaur and P. Singh, “A New Method for Solving Fully Fuzzy Linear Programming Problems,” Applied Mathematical Modelling, Vol. 35, No. 2, 2011, pp. 817-823. doi:10.1016/j.apm.2010.07.037

[12]   J. L. Verdegay, “A Dual Approach to Solve the Fuzzy Linear Programming Problems,” Fuzzy Sets and Systems, Vol. 14, No. 2, 1984, pp. 131-141. doi:10.1016/0165-0114(84)90096-4

[13]   H. R. Maleki, M. Tata and M. Mashinchi, “Linear Programming with Fuzzy Variables,” Fuzzy Sets and Systems, Vol. 109, No. 1, 2000, pp. 21-33. doi:10.1016/S0165-0114(98)00066-9

[14]   A. Ebrahimnejad, S. H. Nasseri and S. M. Mansourzadeh, “Bounded Primal Simplex Algorithm for Bounded Linear Programming with Fuzzy Cost Coefficients,” International Journal of Operational Research and Information Systems, Vol. 2, No. 1, 2011, pp. 96-120. doi:10.4018/IJORIS.2011010105

[15]   N. Mahdavi-Amiri and S. H. Nasseri, “Duality in Fuzzy Number Linear Programming by Use of a Certain Linear Ranking Function,” Applied Mathematics and Computation, Vol. 180, No. 1, 2006, pp. 206-216. doi:10.1016/j.amc.2005.11.161

[16]   S. H. Nasseri and A. Ebrahimnejad, “A Fuzzy Dual Simplex Method for Fuzzy Number Linear Programming Problem,” Advances in Fuzzy Sets and Systems, Vol. 5, No. 2, 2010, pp. 81-95.

[17]   A. Ebrahimnejad, “Sensitivity Analysis on Fuzzy Number Linear Programming Problems,” Mathematical and Computer Modelling, Vol. 53, No. 9-10, 2011, pp. 1878-1888. doi:10.1016/j.mcm.2011.01.013

[18]   N. Mahdavi-Amiri and S. H. Nasseri, “Duality Results and a Dual Simplex Method for Linear Programming Problems with Trapezoidal Fuzzy Variables,” Fuzzy Sets and Systems, Vol. 158, No. 17, 2007, pp. 1961-1978. doi:10.1016/j.fss.2007.05.005

[19]   N. Mahdavi-Amiri, S. H. Nasseri and A. Yazdani, “Fuzzy Primal Simplex Algorithms for Solving Fuzzy Linear Programming Problems,” Iranian Journal of Operational Research, Vol. 1, No. 2, 2009, pp. 68-84.

[20]   S. H. Nasseri and A. Ebrahimnejad, “A Fuzzy Primal Simplex Algorithm and Its Application for Solving Flexible Linear Programming Problems,” European Journal of Industrial Engineering, Vol. 4, No. 3, 2010, pp. 372-389. doi:10.1504/EJIE.2010.033336

[21]   A. Ebrahimnejad and S. H. Nasseri, “Using Complementary Slackness Property to Solve Linear Programming with Fuzzy Parameters,” Fuzzy Information and Engineering, Vol. 1, No. 3, 2009, pp. 233-245. doi:10.1007/s12543-009-0026-9

[22]   S. H. Nasseri and N. Mahdavi-Amiri, “Some Duality Results on Linear Programming Problems with Symmetric Fuzzy Numbers,” Fuzzy Information and Engineering, Vol. 1, No. 1, 2009, pp. 59-66. doi:10.1007/s12543-009-0004-2

[23]   S. H. Nasseri, A. Ebrahimnejad and S. Mizuno, “Duality in Fuzzy Linear Programming with Symmetric Trapezoidal Numbers,” Applications and Applied Mathematics, Vol. 5, No. 10, 2010, pp.1467-1482.

[24]   A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8, No. 3, 1965, pp. 338-353. doi:10.1016/S0019-9958(65)90241-X

 
 
Top