[1] B. Kimia, A. Tannenbaum and S. Zucker, “On the Evolution of Curves via a Function of Curvature. I. The Classical Case,” Journal Mathematical Analysis and Application, Vol. 163, No. 2, 1992, pp. 438-458. doi:10.1016/0022-247X(92)90260-K
[2] B. Kimia, A. Tannenbaum and S. Zucker, “Shapes, Shochs, and Deformations I: The Components of Two-Dimensional Shape and the Reaction-Diffusion Space,” International Journal of Computer Vision, Vol. 15, No. 3, 1995, pp. 189-224. doi:10.1007/BF01451741
[3] C. Rogers and W. K. Schief, “Backlund and Darboux Transformations Geometry and Modern Application in Soliton Theory,” Cambridge University press, Cambridge, 2002. doi:10.1017/CBO9780511606359
[4] M. do Carmo, “Differerntial Geometry of Curves and Surfaces,” Prentice-Hall, Upper Saddle River, 1976.
[5] L. P. Eisenhart, “A Treatise on the Differential Geometry of Curves and Surfaces,” Ginn, Boston, 1909.
[6] G. W. Bluman and S. Kumei, “Symmetries and Differential Equations,” Springer, New York, 1989.
[7] P. J. Olver, “Applications of Lie Groups to Differential Equations,” Springer, New York, 1986.
[8] P. Winternitz, “Lie Groups and Solutions of Nonlinear Partial Differential Equations, Integrable Systems, Quantum Groups, and Qunatum Field Theories,” Kluwer Academic, Dordrecht, 1992.
[9] C. H. Gu, “Soliton Theory and Its Applications,” Sprin-ger-Verlag, Berlin, 1995.
[10] C. H. Gu and H. S. Hu, “On the Determination of Nonlinear PDE Admitting Integrable System,” Scientia Sinica, Series A, 1986, pp. 704-719.