[1] Dandy, J.M.A. (2003) Fundamentals of Celestial Mechanics. 2nd Edition, Willmann-Bell, Virginia.
[2] Fukushima, T. (1999) Fast Procedure Solving Universal Kepler’s Equation. Celestial Mechanics and Dynamical Astronomy, 75, 201-226.
http://dx.doi.org/10.1023/A:1008368820433
[3] Battin, R.H. (1999) An Introduction to the Mathematics and Methods Astrodynamics. Revised Edition, AIAA Education Series, New York.
http://dx.doi.org/10.2514/4.861543
[4] Voelkel, J.R. (2001) The Composition of Kepler’s Astronomia Nova. Princeton University Press, New York.
http://press.princeton.edu/titles/7187.html
[5] Bruce, S. (1987) Kepler’s Physical Astronomy. Springer-Verlag, New York.
[6] Tisserand, F. (1894) Mecanique Celeste. Vol. 3. Gauthier-Villars, Paris.
[7] Siewert, C.E. and Burniston, E.E. (1972) An Exact Analytical Solution of Kepler’s Equation. Celestial Mechanics, 6, 294-304.
http://link.springer.com/article/10.1007/BF01231473#page-1
[8] Tokis, J.N. (1973) Effects of Tidal Dissipative Processes on Stellar Rotation. PhD Thesis, Victoria University of Manchester, Manchester.
[9] Fernandes, S.daS. (2003) Universal Closed-form of Lagrangian Multipliers for Coast-Arcs of Optimum Space Trajectories. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 25, 1-9.
http://dx.doi.org/10.1590/S1678-58782003000400004
[10] Condurache, D. and Martinusi, V. (2006) Vectorial Regularization and Temporal Means in Keplerian Motion. Journal of Nonlinear Mathematical Physics (World Scientific), 13, 420-440. http://dx.doi.org/10.2991/jnmp.2006.13.3.7
[11] Pathan, A. and Collyer, T. (2006) A Solution to a Cubic—Barker’s Equation for Parabolic Trajectories. Mathematical Gazette, 90, 398-403.
[12] Boubaker, K. (2010) Analytical Initial-Guess-Free Solution to Kepler’s Transcendental Equation Using Boubaker Polynomials Expansion Scheme BPES. Apeiron, 17, 1-12.
http://redshift.vif.com/JournalFiles/V17NO1PDF/V17N1BOU.pdf
[13] Colwell, P. (1993) Solving Kepler’s Equation over Three Centuries. Willmann-Bell, Richmond.
http://www.willbell.com/math/mc12.htm
[14] Floria, L. (1996) A Proof of Universality of Arc Length as Time Parameter in Kepler Problem. Extracta Mathematicae, 11, 315-324. http://dmle.cindoc.csic.es/pdf/EXTRACTAMATHEMATICAE_1996_11_02_09.pdf
[15] Fukushima, T. (1998) A Fast Procedure Solving Gauss Form of Kepler’s Equation. Celestial Mechanics and Dynamical Astronomy, 70, 115-130. http://link.springer.com/article/10.1023%2FA%3A1026479306748#page-1
[16] Sharaf, M.A. and Sharaf, A.A. (1998) Closest Approach in Universal Variables. Celestial Mechanics and Dynamical Astronomy, 69, 331-346. http://link.springer.com/article/10.1023%2FA%3A1008223105130#page-1
[17] Sharaf, M.A. and Sharaf, A.A. (2003) Homotopy Continuation Method of Arbitrary Order of Convergence for the Two-Body Universal Initial Value Problem. Celestial Mechanics and Dynamical Astronomy, 86, 351-362.
http://link.springer.com/article/10.1023/A:1024544523868#page-1
[18] Jia, L. (2013) Approximate Kepler’s Elliptic Orbits with the Relativistic Effects. International Journal of Astronomy and Astrophysics, 3, 29-33.
http://dx.doi.org/10.4236/ijaa.2013.31004
[19] Aghili, A. and Salkhordeh-Moghaddam, B. (2008) Laplace Transform Pairs of N-Dimensions and Second Order Linear Partial Differential Equations with Constant Coefficients. Annales Mathematicae et Informaticae, 35, 3-10.
http://www.emis.de/journals/AMI/2008/ami2008-aghili-salkhordeh.pdf
[20] Valko, P.P. and Abate, J. (2005) Numerical Inversion of 2-D Laplace Transforms Applied to Fractional Diffusion Equation. Applied Numerical Mathematics, 53, 73-88. http://dx.doi.org/10.1016/j.apnum.2004.10.002
[21] Ditkin, V.A. and Prudnicov, A.P. (1962) Operational Calculus in Two Variables and Its Application. Pergamum Press, New York.