[1] Masland, R.H. (2001) Neuronal Diversity in the Retina. Current Opinion in Neurobiology, 11, 431-436.
http://dx.doi.org/10.1016/S0959-4388(00)00230-0
[2] Masland, R.H. (2001) The Fundamental Plan of the Retina. Nature Neuroscience, 4, 877-886.
http://dx.doi.org/10.1038/nn0901-877
[3] Frisby, J.P. and Stone, J.V. (2010) Seeing: The Computational Approach to Biological Vision. 2nd Edition. The MIT Press.
[4] Wolfram, S. (2002) A New Kind of Science. 1st Edition, Wolfram Media Inc., Champaign, 955.
[5] Beigzadeh, M., Golpayegani, S.M.R.H. and Gharibzadeh, S. (2013) Can Cellular Automata Be a Representative Model for Visual Perception Dynamics? Frontiers in Computational Neuroscience, 7, 1-2.
[6] Marr, D. (1982) Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman and Company, San Francisco.
[7] Mead, C. (1989) Analog VLSI and Neural Systems. Addison-Wesley, Upper Saddle River.
http://dx.doi.org/10.1007/978-1-4613-1639-8
[8] Masland, R.H. (2012) The Neuronal Organization of the Retina. Neuron, 76, 266-280.
http://dx.doi.org/10.1016/j.neuron.2012.10.002
[9] Swaroop, A., Kim, D. and Forrest, D. (2010) Transcriptional Regulation of Photoreceptor Development and Homeostasis in the Mammalian Retina. Neuroscience, 11, 563-576.
[10] Rigaudière, F., Le Gargasson, J.F. and Delouvrier, E. (2010) IV-Les voies visuelles: Rappels anatomo-fonctionnels. (Eil et physiologie de la vision, IV-Les voies visuelles, 209-262.
[11] Hartline, H.K. (1940) The Effects of Spatial Summation in the Retina on the Excitation of the Fibers of the Optic Nerve. American Journal of Physiology, 130, 700-711.
[12] Blythe, S.N. and Krantz, J.H. (2004) A Mathematical Model of Retinal Receptive Fields Capable of Form & Color Analysis. Impulse: The Premier Journal for Undergraduate Publications in the Neurosciences, 1, 38-50.
[13] Hashimoto, T., Katai, S., Saito, Y., Kobayashi, F. and Goto, T. (2012) ON and OFF Channels in Human Retinal Ganglion Cells. The Journal of Physiology, 591, 327-337.
[14] Protti, D.A., Di Marco, S., Huang, J.Y., Vonhoff, C.R., Nguyen, V. and Solomon, S.G. (2014) Inner Retinal Inhibition Shapes the Receptive Field of Retinal Ganglion Cells in Primate. Journal of Physiology, 592, 49-65.
[15] Dowling, J.E. (1987) The Retina: An Approach Part of the Brain. 2nd Edition, Belknap Press of Harvard University Press, Cambridge.
[16] Wohrer, A., Kornprobst, P. and Vieville, T. (2006) A Biologically-Inspired Model for a Spiking Retina. Technical Report 5848, INRIA.
[17] Muchungi, K. and Casey, M.C. (2012) Simulating Light Adaptation in the Retina with Rod-Cone Coupling. Proceedings of the 22nd International Conference on Artificial Neural Networks, Lausanne, 11-14 September 2012, 339-346. http://epubs.surrey.ac.uk/723403
[18] Mustafi, D., Engel, A.H. and Palczewski, K. (2009) Structure of Cone Photoreceptors. Progress in Retinal and Eye Research, 28, 289-302. http://dx.doi.org/10.1016/j.preteyeres.2009.05.003
[19] Van Hateren, J.H. (2007) A Model of Spatiotemporal Signal Processing by Primate Cones and Horizontal Cells. Journal of Vision, 7, 1-19. http://dx.doi.org/10.1167/7.4.1
[20] Dacey, D., Packer, O.S., Diller, L., Brainard, D., Peterson, B. and Lee, B. (2000) Center Surround Receptive Field Structure of Cone Bipolar Cells in Primate Retina. Vision Research, 40, 1801-1811.
http://dx.doi.org/10.1016/S0042-6989(00)00039-0
[21] Demb, J.B., Haarsma, L., Freed, M.A. and Sterling, P. (1999) Functional Circuitry of the Retinal Ganglion Cell’s Nonlinear Receptive Field. The Journal of Neuroscience, 19, 9756-9767.
[22] Zhang, A.J. and Wu, S.M. (2009) Receptive Fields of Retinal Bipolar Cells Are Mediated by Heterogeneous Synaptic Circuitry. The Journal of Neuroscience, 29, 789-797.
http://dx.doi.org/10.1523/JNEUROSCI.4984-08.2009
[23] MacNeil, M.A. and Masland, R.H. (1998) Extreme Diversity among Amacrine Cells: Implications for Function. Neuron, 20, 971-982. http://dx.doi.org/10.1016/S0896-6273(00)80478-X
[24] Hsueh, H.A., Molnar, A. and Werblin, F.S. (2008) Amacrine-to-Amacrine Cell Inhibition in the Rabbit Retina. Journal of Neurophysiology, 100, 2077-2088. http://dx.doi.org/10.1152/jn.90417.2008
[25] Brown, S., He, S. and Masland, R.H. (2000) Receptive Field Microstructure and Dendritic Geometry of Retinal Ganglion Cells. Neuron, 27, 71-383. http://dx.doi.org/10.1016/S0896-6273(00)00044-1
[26] Curcio, C.A. and Allen, K.A. (1990) Topography of Ganglion Cells in Human Retina. The Journal of Comparative Neurology, 300, 5-25. http://dx.doi.org/10.1002/cne.903000103
[27] Demb, J.B., Zaghloul, K., Haarsma, L. and Sterling, P. (2001) Bipolar Cells Contribute to Nonlinear Spatial Summation in the Brisk-Transient (Y) Ganglion Cell in Mammalian Retina. The Journal of Neuroscience, 21, 7447-7454.
[28] Geffen, M.N., de Vries, S.E. and Meister, M. (2007) Retinal Ganglion Cells Can Rapidly Change Polarity from Off to On. PLoS Biology, 5, e65.
[29] Li, Z.P. (1992) Different Retinal Ganglion Cells have Different Functional Goals. International Journal of Neural Systems, 3, 237-248.
[30] Wohrer, A. and Kornprobst, P. (2009) Virtual Retina: A Biological Retina Model and Simulator, with Contrast Gain Control. Journal of Computer Neuroscience, 26, 219-249.
http://dx.doi.org/10.1007/s10827-008-0108-4
[31] Beaudot, W.H.A., Oliva, A. and Herault, J. (1995) Retinal Model of the Dynamics of X and Y Pathways: A Neural Basis for Early Coarse-to-Fine Perception. Proceedings of the European Conference on Visual Perception, Tuebingen, 21-25 August 1995, 93b.
[32] Beaudot, W.H.A. (1994) Le traitement neuronal de l’information dans la rétine des vertébrés—Un creuset d’idées pour la vision artificielle. Ph.D. Thesis, Institut National Polytechnique de Grenoble, Grenoble.
[33] Adelman, T.L., Bialek, W. and Olberg, R.M. (2003) The Information Content of Receptive Fields. Neuron, 40, 823-833. http://dx.doi.org/10.1016/S0896-6273(03)00680-9
[34] Conway, J.H. (1970) Game of Life. Scientific American, 223, 120-123.
[35] Packard, N.H. and Wolfram, S. (1985) Two-Dimensional Cellular Automata. Journal of Statistical Physics, 38, 901-946.
[36] Alber, M.S., et al. (2002) On Cellular Automaton Approaches to Modeling Biological Cells. In: Rosenthal, J. and Gilliam, D.S., Eds., IMA Mathematical Systems Theory in Biology, Communication and Finance, Springer-Verlag, Berlin.
[37] Chauhan, S. (2013) Survey Paper on Training of Cellular Automata for Image. International Journal of Engineering and Computer Science, 2, 980-985.
[38] Gonzalez, R.C. and Woods, R.E. (1989) Digital Image Processing. 3rd Edition, Prentice Hall, Englewood Cliff.
[39] Richefeu, J.C. and Manzanera, A. (2004) A New Hybrid Differential Filter for Motion Detection. Computer Vision and Graphics, 28, 727-732.
[40] Pitas, I. and Venetsanopoulos, A.N. (1992) Order Statistics in Digital Image Processing. Proceedings of the IEEE, 80, 1893-1921. http://dx.doi.org/10.1109/5.192071
[41] Lee, B.B., Dacey, D.M., Smith, V.C. and Pokorny, J. (1999) Horizontal Cells Reveal Cone Type-Specific Adaptation in Primate Retina. Proceedings of the National Academy of Sciences of United States of America, 96, 14611-14616.
[42] Shapley, R. and Enroth-Cugell, C. (1984) Visual Adaptation and Retinal Gain Controls. Progress in Retinal Research, 3, 263-346.
[43] Meylan, L., Alleysson, D. and Süsstrunk, S. (2007) A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images. Journal of the Optical Society of America A, 24, 2807-2816.
[44] Benoit, A., Caplier, A., Durette, B. and Herault, J. (2010) Using Human Visual System Modeling for Bio-Inspired Low Level Image Processing. Computer Vision and Image Understanding, 114, 758-773.
[45] Naka, K.I. and Rushton, W.A.H. (1966) S-Potential from Luminosity Units in the Retina of Fish (Cyprinidae). Journal of Physiology, 185, 587-599.
[46] Buntain, C. (2012) Psychophysics and Just-Noticeable Difference CMSC828D Report 4.
http://www.cs.umd.edu/class/fall2012/cmsc828d/\\reportfiles/buntain4.pdf
[47] Beaudot, W.H.A. (1993) The Vertebrate Retina: A Model of Spatiotemporal Image Filtering. In: GRETSI'93, XIVème GRETSI Conférence, Juan-les-Pins, 427-430.
[48] Kauffmann, C. and Piché, N. (2009) A Cellular Automaton Framework for Image Processing on GPU. Pattern Recoginition, 353-375.
[49] Gobron, S., Devillard, F. and Heit, B. (2006) Retina Simulation Using Cellular Automaton and GPU Programming. Machine Vision and Applications, 18, 331-342.
http://dx.doi.org/10.1007/s00138-006-0065-8
[50] Khan, A.R. (2010) On Two Dimensional Cellular Automata and Its VLSI Applications. International Journal of Electrical & Computer Sciences, 10, 111-114.