JMP  Vol.5 No.18 , December 2014
Composite Photon Theory versus Elementary Photon Theory
Author(s) Walton A. Perkins*
ABSTRACT
The purpose of this paper is to show that the composite photon theory measures up well against the Standard Model’s elementary photon theory. This is done by comparing the two theories, area by area. Although the predictions of quantum electrodynamics are in excellent agreement with experiment (as in the anomalous magnetic moment of the electron), there are some problems, such as the difficulty in describing the electromagnetic field with the four-component vector potential because the photon has only two polarization states. In most areas the two theories give similar results, so it is impossible to rule out the composite photon theory. Pryce’s arguments in 1938 against a composite photon theory are shown to be invalid or irrelevant. Recently, it has been realized that in the composite theory the antiphoton does not interact with matter because it is formed of a neutrino and an antineutrino with the wrong helicity. This leads to experimental tests that can determine which theory is correct.

Cite this paper
Perkins, W. (2014) Composite Photon Theory versus Elementary Photon Theory. Journal of Modern Physics, 5, 2089-2105. doi: 10.4236/jmp.2014.518205.
References
[1]   de Broglie, L. (1932) Comptes Rendus, 195, 536.

[2]   de Broglie, L. (1934) Une novelle conception de la lumiere. Hermann et Cie, Paris.

[3]   Jordan, P. (1935) Zeitschrift fur Physik, 93, 464-472.
http://dx.doi.org/10.1007/BF01330373

[4]   Pryce, M.H.L. (1938) Proceedings of Royal Society (London), A165, 247-271.
http://dx.doi.org/10.1098/rspa.1938.0058

[5]   Case, K.M. (1957) Physical Review, 106, 1316-1320.
http://dx.doi.org/10.1103/PhysRev.106.1316

[6]   Berezinskii, V.S. (1967) Soviet Physics JETP, 24, 927-933.

[7]   Perkins, W.A. (2002) International Journal of Theoretical Physics, 41, 823-838.
http://dx.doi.org/10.1023/A:1015728722664

[8]   Fukuda, Y., et al. (1998) Physical Review Letters, 81, 1562-1567.
http://dx.doi.org/10.1103/PhysRevLett.81.1562

[9]   Ahmad, Q.R., et al. (2001) Physical Review Letters, 87, Article ID: 07131.

[10]   Dvoeglazov, V.V. (1999) Annales de la Fondation Louis de Broglie, 24, 111-127.

[11]   Dvoeglazov, V.V. (2001) Physica Scripta, 64, 119-127.
http://dx.doi.org/10.1238/Physica.Regular.064a00119

[12]   Perkins, W.A. (2000) Interpreted History of Neutrino Theory of Light and Its Future. In: Chubykalo, A.E., Dvoeglazov, V.V., Ernst, D.J., Kadyshevsky, V.G. and Kim, Y.S., Eds., Lorentz Group, CPT and Neutrinos, World Scientific, Singapore, 115-126.

[13]   Perkins, W.A. (2013) Journal of Modern Physics, 4, 12-19.
http://dx.doi.org/10.4236/jmp.2013.412A1003

[14]   Andresen, G.B., Ashkezari, M.D., Baquero-Ruiz, M., Bertsche, W., Bowe, P.D., Butler, E., et al. (2011) Nature Physics, 7, 558-564.
http://dx.doi.org/10.1038/nphys2025

[15]   Amole, C., Ashkezari, M.D., Baquero-Ruiz, M., Bertsche, W., Bowe, P.D., Butler, E., et al. (2012) Nature, 483, 439-443.
http://dx.doi.org/10.1038/nature10942

[16]   Enomoto, Y., Kuroda, N., Michishio, K., Kim, C.H., Higaki, H., Nagata, Y., et al. (2010) Physical Review Letters, 105, Article ID: 243401.
http://dx.doi.org/10.1103/PhysRevLett.105.243401

[17]   Bjorken, J.D. and Drell, S.D. (1965) Relativistic Quantum Fields. McGraw-Hill, New York.

[18]   Srednicki, M. (2007) Quantum Field Theory. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511813917

[19]   Varlamov, V.V. (2002) Annales de la Fondation Louis de Broglie, 27, 273-286. http://arXiv:math-ph/0109024v2

[20]   Schweber, S.S. (1961) An Introduction to Relativistic Quantum Field Theory. Harper and Row, New York.

[21]   Veltman, M. (1994) Diagrammatica, the Path to Feynman Rules. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511564079

[22]   Fermi, E. and Yang, C.N. (1949) Physical Review, 76, 1739-1743.
http://dx.doi.org/10.1103/PhysRev.76.1739

[23]   Kronig, R.L. (1936) Physica, 3, 1120-1132.
http://dx.doi.org/10.1016/S0031-8914(36)80340-1

[24]   Sen, D.K. (1964) Il Nuovo Cimento, 31, 660-669.
http://dx.doi.org/10.1007/BF02733763

[25]   Koltun, D.S. and Eisenberg, J.M. (1988) Quantum Mechanics of Many Degrees of Freedom. Wiley, New York.

[26]   Perkins, W.A. (1972) Physical Review D, 5, 1375-1384.
http://dx.doi.org/10.1103/PhysRevD.5.1375

[27]   Lipkin, H.J. (1973) Quantum Mechanics, Chapter 6. North-Holland, Amsterdam.

[28]   Sahlin, H.L. and Schwartz, J.L. (1965) Physical Review, 138, B267-B273.
http://dx.doi.org/10.1103/PhysRev.138.B267

[29]   Schiff, L.I. (1955) Quantum Mechanics. McGraw-Hill, New York.

[30]   Landau, L.D. (1948) Doklady Akademii Nauk SSSR, 60, 207-209.

[31]   Yang, C.N. (1950) Physical Review, 77, 242-245.
http://dx.doi.org/10.1103/PhysRev.77.242

[32]   Wilson, F.L. (1968) American Journal of Physics, 36, 1150.
http://dx.doi.org/10.1119/1.1974382

[33]   Badertscher, A., Crivelli, P., Fetscher, W., Gendotti, U., Gninenko, S., Postoev, V., et al. (2007) Physical Review D, 75, Article ID: 032004.
http://arxiv.org/abs/hep-ex/0609059

[34]   Ravndal, F. (2006) Notes on Quantum Mechanics. Institute of Physics, University of Oslo, Oslo.

 
 
Top