Combining Algebraic and Numerical Techniques for Computing Matrix Determinant

Show more

References

[1] Muir, T. (1960) The Theory of Determinants in Historical Order of Development. Vol. I-IV, Dover, New York.

[2] Fortune, S. (1992) Voronoi Diagrams and Delaunay Triangulations. In: Du, D.A. and Hwang, F.K., Eds., Computing in Euclidean Geometry, World Scientific Publishing Co., Singapore City, 193-233.

[3] Br?nnimann, H., Emiris, I.Z., Pan, V.Y. and Pion, S. (1997) Computing Exact Geometric Predicates Using Modular Arithmetic. Proceedings of the 13th Annual ACM Symposium on Computational Geometry, 174-182.

[4] Br?nnimann, H. and Yvinec, M. (2000) Efficient Exact Evaluation of Signs of Determinant. Algorithmica, 27, 21-56.

http://dx.doi.org/10.1007/s004530010003

[5] Pan, V.Y. and Yu, Y. (2001) Certification of Numerical Computation of the Sign of the Determinant of a Matrix. Algorithmica, 30, 708-724.

http://dx.doi.org/10.1007/s00453-001-0032-8

[6] Clarkson, K.L. (1992) Safe and Effective Determinant Evaluation. Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press, 387-395.

[7] Avnaim, F., Boissonnat, J., Devillers, O., Preparata, F.P. and Yvinec, M. (1997) Evaluating Signs of Determinants Using Single-Precision Arithmetic. Algorithmica, 17, 111-132.

http://dx.doi.org/10.1007/BF02522822

[8] Pan, V., Yu, Y. and Stewart, C. (1997) Algebraic and Numerical Techniques for Computation of Matrix Determinants. Computers & Mathematics with Applications, 34, 43-70.

http://dx.doi.org/10.1016/S0898-1221(97)00097-7

[9] Golub, G.H. and Van Loan, C.F. (1996) Matrix Computations. 3rd Edition, John Hopkins University Press, Baltimore.

[10] Edmonds, J. (1967) Systems of Distinct Representatives and Linear Algebra. Journal of Research of the National Bureau of Standards, 71, 241-245.

http://dx.doi.org/10.6028/jres.071B.033

[11] Bareiss, E.H. (1969) Sylvester’s Identity and Multistep Integer-Preserving Gaussian Elimination. Mathematics of Computation, 22, 565-578.

[12] Bini, D. and Pan, V.Y. (1994) Polynomial and Matrix Computations, Fundamental Algorithms. Vol. 1, Birkhäuser, Boston.

http://dx.doi.org/10.1007/978-1-4612-0265-3

[13] Conte, S.D. and de Boor, C. (1980) Elementary Numerical Analysis: An Algorithm Approach. McGraw-Hill, New York.