[1] Birdsall, C.K. (1991) Particle-in-Cell Charged-Particle Simulations, plus Monte Carlo Collisions with Neutral Atoms, PIC-MCC. IEEE Transactions on Plasma Science, 19, 65-85.
http://dx.doi.org/10.1109/27.106800
[2] Vahedi, V. and Surendra, M. (1995) A Monte Carlo Collision Model for the Particle-in-Cell Method: Applications to Argon and Oxygen Discharges. Computer Physics Communications, 87, 179-198.
http://dx.doi.org/10.1016/0010-4655(94)00171-W
[3] Zobnin, A.V., Nefedov, A.P., Sinel’Shchikov, V.A. and Fortov, V.E. (2000) On the Charge of Dust Particles in a Low-Pressure Gas Discharge Plasma. Journal of Experimental and Theoretical Physics, 91, 483-487.
http://dx.doi.org/10.1134/1.1320081
[4] Cenian, A., Chernukho, A., Bogaerts, A., Gijbels, R. and Leys, C. (2005) Particle-in-Cell Monte Carlo Modeling of Langmuir Probes in an Ar Plasma. Journal of Applied Physics, 97, Article ID: 123310.
http://dx.doi.org/10.1063/1.1938275
[5] Sysun, A.V., Sysun, V.I., Khakhaev, A.D. and Shelestov, A.S. (2008) Charge and Potential of a Dust Grain versus the Intergrain Distance and Establishment of the Latter in a Low-Pressure Plasma. Plasma Physics Reports, 34, 501-507.
http://dx.doi.org/10.1134/S1063780X08060068
[6] Sysun, V.I. and Ignakhin, V.S. (2014) Simulations of the Ion Current to a Probe in Plasma with Allowance for Ionization and Ion-Neutral Collisions: I. Spherical Probe. Plasma Physics Reports, 40, 101-109.
http://dx.doi.org/10.1134/S1063780X14010097
[7] Kim, H.C., Iza, F., Yang, S.S., Radmilovic-Radjenovic, M. and Lee, J.K. (2005) Particle and Fluid Simulations of Low-Temperature Plasma Discharges: Benchmarks and Kinetic Effects. Journal of Physics D: Applied Physics, 38, Article ID: R283.
http://dx.doi.org/10.1088/0022-3727/38/19/R01
[8] Vaulina, O.S., Repin, A.Y. and Petrov, O.F. (2006) Empirical Approximation for the Ion Current to the Surface of a Dust Grain in a Weakly Ionized Gas-Discharge Plasma. Plasma Physics Reports, 32, 485-488.
http://dx.doi.org/10.1134/S1063780X06060055
[9] Simek, J. and Hrach, R. (2006) Comparison of Collision Treatment Methods in PIC-MC Plasma Simulation. Czechoslovak Journal of Physics, 56, B1086-B1090.
http://dx.doi.org/10.1007/s10582-006-0331-z
[10] May, P.W., Field, D. and Klemperer, D.F. (1992) Modeling Radio-Frequency Discharges: Effects of Collisions upon Ion and Neutral Particle Energy Distributions. Journal of Applied Physics, 71, 3721-3730.
http://dx.doi.org/10.1063/1.350882
[11] Nanbu, K. and Kitatani, Y. (1995) An Ion-Neutral Species Collision Model for Particle Simulation of Glow Discharge. Journal of Physics D: Applied Physics, 28, 324.
http://dx.doi.org/10.1088/0022-3727/28/2/015
[12] Boeuf, J.P. and Marode, E. (1982) A Monte Carlo Analysis of an Electron Swarm in a Nonuniform Field: The Cathode Region of a Glow Discharge in Helium. Journal of Physics D: Applied Physics, 15, 2169.
http://dx.doi.org/10.1088/0022-3727/15/11/012
[13] Skullerud, H.R. (1968) The Stochastic Computer Simulation of Ion Motion in a Gas Subjected to a Constant Electric Field. Journal of Physics D: Applied Physics, 1, 1567.
http://dx.doi.org/10.1088/0022-3727/1/11/423
[14] Maiorov, S.A. (2009) Ion Drift in a Gas in an External Electric Field. Plasma Physics Reports, 35, 802-812.
http://dx.doi.org/10.1134/S1063780X09090098
[15] McDaniel, E.W. and Mason, E.A. (1973) Mobility and Diffusion of Ions in Gases. Wiley, New York.
[16] Smirnov B.M. (2008) The Sena Effect. Physics-Uspekhi, 51, 291-293.
http://dx.doi.org/10.1070/PU2008v051n03ABEH006542