AS  Vol.5 No.14 , December 2014
New Technique to Produce Large Amount of Flat Silk by Biospinning
Abstract: Beyond the production of silk thread, there are several studies showing that the silk is a great biomaterial for surgical sutures and grafts. This paper shows a new technique to produce silk thread changing the natural cycle of silk production, which is the production of cocoons. This new method has the purpose of producing a silk fabric free of impurities, through flat surfaces. Six different surfaces were tested: Glass, Formica Surface, Steel and Zinc Sheets, Cotton tissue and Burlap Bag. The first five surfaces had not presented enough larvae alive for statistical analysis, because there were several damages in silkworms larvae that resulted in mortality and low silk production. On the other hand, the burlap bag surface presented good results for web construction by biospinning and its use was indicated for silk industry focused on biomaterials. The present study suggested the potential of naturally biospun web, using Bombyx mori, to develop a new technique to produce silk thread matrices that will have several applications at the industry and production of biomedical materials.
Cite this paper: Garay, L. , Nembri, A. , Oro, A. , Fassina, V. , Saez, C. , Chiarello, A. , Pereira, N. , Pessini, G. , Munhoz, R. and Fernandez, M. (2014) New Technique to Produce Large Amount of Flat Silk by Biospinning. Agricultural Sciences, 5, 1483-1490. doi: 10.4236/as.2014.514159.

[1]   Kaplan, D.L., Mello, S.M., Arcidiacono, S. and Fossey, S. (1998) Senecal KWM. Materiais à base de proteínas, McGrath KKD, Boston.

[2]   Zhong, W.Y., Hogan, R.J. and Haigh, J.D. (2008) Three-Dimensional Radiative Transfer in Midlatitude Cirrus Clouds. Royal Meteorological Society, 134, 199-215.

[3]   Conab-Companhia Nacional de Abastecimento. Casulo de seda proposta de preco mínimo safra 2006/2007.

[4]   Fernandez, M.A., Ciferri, R.R., Patussi, E.V., Pereira, M.F., Felipes, J., Bravo, J.P., Zanatta, D.B., Gouveia, F.S. and Balani, V.A. (2005) Utilizacao da biotecnologia na sericicultura brasileira. Biotecnologia Ciência e Desenvolvimento, 35, 56-61.

[5]   Kong, X.D., Wang, X.M. and Cui, F.Z. (2005) Preparation of Hydroxyapatite-Fibroin Nanocomposites. Engineering Materials, 228-289, 191-194.

[6]   Mondal, K. and Trived, S. (2007) The Silk Proteins, Sericin and Fibroin in Silkworm, Bombyx mori. Caspian Journal of Environmental Sciences, 5, 63-76.

[7]   Kundu, B. and Kundu, S.C. (2010) Osteogenesis of Human Stem Cells in Silk Biomaterial for Regenerative Therapy. Progress in Polymer Science, 35, 1116-1127.

[8]   Hardy, J.O., Lin, M.R. and Scheilbel, T. (2008) Polymeric Materials Based on Silk Proteins. Polymer, 46, 4309-4327.

[9]   Gu, Z.W., Han, Y.F., Pan, F.S., Wang, X.T., Weng, D. and Zhou, S.X. (2009) Preparation and Characteristics of Gradient Silk Fibroin-Hydroxyapatite. Porous Composites Materials Science Forum, 610-613, 1231-1236.

[10]   Wang, Y., Kim, H.J., Vunjak-Novakovic, G. and Kaplan, D.L. (2006) Stem Cell-Based Tissue Engineering with Silk Biomaterials. Biomaterials, 36, 6064-6082.

[11]   Altman, G., Diaz, F., Jakuba, C., Calabro, T., Horan, R.L., Chen, J., Lu, H., Richmond, J. and Kaplan, D.L. (2003) Silk-Based Biomaterials. Biomaterials, 4, 401-416.

[12]   Sofia, S., McCarthy, M.B., Gronowicz, G. and Kaplan, D.L. (2001). Functionalized Silk-Based Biomaterials for Bone Formation. Journal of Biomedical Materials Research, 54, 139-148.<139::AID-JBM17>3.0.CO;2-7

[13]   Mandal, B.B. and Kundu, S.C. (2010) Biospinning by Silkworms: Silk Fiber Matrices for Tissue Engineering Applications. Acta Biomaterialia, 6, 360-371.

[14]   Wang, D.G. (2009) Judgment and Analysis on the Success & Failure of Modern Sericicultural Industry Development. Asian Agricultural Research, 1, 13-52.

[15]   Chou, W.S. and Lu, H.S. (1980) Growth Regulation and Silk Production in Bombyx mori L. from Phytogenous Ecdysteroids. In: Hoffman, J.A., Ed., Progress in Ecdysone Research, Elsevier/North Holland Biomedical Press, Amesterdam.

[16]   Zhuang, D.H., Xiang, M. and Gui, Z.Z. (1992) The Practical Studies on the Growth and Development by Insect Hormones in the Silkworm Bombyx mori. The 19th International Congress Entomology, Beijing.

[17]   Zia, H.R., Munshi, N.A., Sharma, R. K., Ganie, N.A. and Malik, G.N. (2012) Effect of Phytoecdysteroid (β-Ecdysone) on Synchronization of Maturation in Silkworm Bombyx mori L. International Journal of Advanced Biological Research, 2, 238-240.

[18]   Porto, A.J. and Okamoto, F. (2003) Desempenho Produtivo de Quatro Ra?as do Bicho-da-Seda (Bombyx mori L.) e Seus Cruzamentos. Boletim de Indústria Animal, 60, 179-184.

[19]   Porto, A.J., Okamoto, F., Cunha, E.A. and Otsuk, I.P. (2004) Caracterizacao de oito Racas do Bicho-da-Seda (Bombyx mori L.). Ciência Rural, 34, 259-264.

[20]   Rao, C.G., Seshagiri, S.V., Ramesh, C., Ibrahim, B.K., Nagaraju, H. and Chandrashekaraia (2006) Evaluation of Genetic Potential of the Polyvoltine Silkworm (Bombyx mori L.) Germplasm and Identifi Cation of Parents for Breeding Programme. Journal of Zhejiang University Science B, 7, 215-220.

[21]   Zanatta, D.B., Bravo, J.P., Barbosa, J.F., Munhoz, R.E.F. and Fernandez, M.A. (2009) Evaluation of Economically Important Traits from Sixteen Parental Strains of the Silkworm Bombyx mori L (Lepidoptera: Bombycidae). Neotropical Entomology, 38, 327-331.

[22]   Najafil, N., Seidavi, A.R., Mirhosseini, S.Z., Gharahveysil, S., Mavvajpour, M. and Salehi, N. (2011) Analysis of Genetic Divergence for Classification and Evaluation of 37 Productive Performances in 54 Oval Cocoon Strains of Iran Silkworm Germplasm. African Journal of Biotechnology, 82, 19218-19243.

[23]   Sengupta, K., Kumar, P. and Baig, M. (1990) Govindaiah Handbook on Pest and Disease Control of Mulberry and Silkworm. UNESCAP United Nations Economic and Social Commission for Asia and the Pacific, Bangkok.

[24]   Chapman, R.F. (1998) The Insect Structure and Function. American Elsevier Publishing Company, New York, 533-566.

[25]   Fonseca, A.S. and Fonseca, T.C. (1986) Cultura da Amoreira e Cria??o do Bicho-da-Seda. S?o Paulo.

[26]   Asakura, T., Umemura, K., Nakazawa, Y., Hirose, H., Higham, J. and Knight, D. (2007) Some Observations on the Structure and Function of the Spinning Apparatus in the Silkworm Bombyx mori. Biomacromolecules, 8, 175-181.

[27]   Gauthier, N., Mandon, N., Renault, S. and Bénédet, F. (2004) The Acrolepiopsis assectella Silk Cocoon: Kairomonal Function and Chemical Characterization. Journal of Insect Physiology, 50, 1065-1074.

[28]   Lyon, B.E. and Cartar, R.V. (1996) Functional Significance of the Cocoon in Two Arctic Gynaephora Moth Species. Proceedings of the Royal Society B Biological Sciences, 263, 1159-1163.

[29]   Fedic, R., Zurovec, M. and Sehnal, F. (2002) The Silk of Lepidoptera. Journal of Insect Biotechnology and Sericology, 71, 1-15.

[30]   Zhao, H.P., Feng, X.Q., Cui, W.Z. and Zou, F.Z. (2007) Mechanical Properties of Silkworm Cocoon Pelades. Engineering Fracture Mechanics, 74, 1953-1962.

[31]   Chen, F.J., Porter, D. and Vollrath, F. (2012) Silk Cocoon (Bombyx mori): Multi-Layer Structure and Mechanical Properties. Acta Biomaterialia, 8, 2620-2627.

[32]   Zhao, H.P., Feng, X.Q., Yu, S.W., Cui, W.Z. and Zou, F.Z. (2005) Mechanical Properties of Silkworm Cocoons. Polymer, 46, 9192-9201.

[33]   Blossman-Myer, B. and Burggren, W.W. (2010) The Silk Cocoon of the Silkworm, Bombyx mori: Macro Structure and Its Influence on Transmural Diffusion of Oxygen and Water Vapor. Comparative Biochemistry and Physiology, Part A, 155, 259-263.

[34]   Unger, R.E., Wolf, M., Peters, K., Motta, A., Migliaresi, C. and Kirkpatrick, J.C. (2004) Growth of Human Cells on a Non-Woven Silk Fibroin Net: A Potential for Use in Tissue Engineering. Biomaterials, 25, 1069-1075.

[35]   Wang, Y.Z., Blasioli, D.J., Kim, H.J., Kim, H.S. and Kaplan, D.L. (2006) Cartilage Tissue Engineering with Silk Scaffolds and Human Articular Chondrocytes. Biomaterials, 27, 4434-4442.

[36]   Vepari, C. and Kaplan, D.L. (2007) Silk as a Biomaterial. Progress in Polymer Science, 32, 991-1007.

[37]   Jin, H.J., Fridrikh, S.V., Rutledge, G.C. and Kaplan, D.L. (2002) Electrospinning B. mori Silk with Poly (Ethylene Oxide). Biomacromolecules, 6, 1233-1239.

[38]   Armato, U., Dal Para, I., Kesenci, K., Migliaresi, C. and Motta, A. (2002) Method for the Preparation of Non-Woven Silk Fibroin Fabrics. Patent, PTC WO 02/29141 A1.

[39]   Unger, R.E., Peters, K., Wolf, M., Motta, A., Migliaresi, C. and Kirkpatrick, C.J. (2004) Endothelialization of a Nonwoven Silk Fibroin Net for Use in Tissue Engineering: Growth and Gene Regulation of Human Endotelial Cells. Biomaterials, 25, 5137-5146.

[40]   Liivak, O., Blye, A., Shah, N. and Jelinski, L.W. (1998) A Microfabricated Wet-Spinning Apparatus to Spin Fibers of Silk Proteins. Structure-Property Correlations. Macromolecules, 31, 2947-2951.

[41]   Seidel, A., Liivak, O., Calve, S., Adaska, J., Ji, G.D., Yang, Z.T., Grubb, D., Zax, D.B. and Lynn, W. J. (2000) Regenerated Spider Silk: Processing, Properties, and Structure. Macromolecules, 33, 775-780.

[42]   Shao, Z.Z., Vollrath, F., Yang, Y. and Thgersen, H.C. (2003) Structure and Behaviour of Regenerated Spider Silk. Macromolecules, 36, 1157-1161.

[43]   Jiang, P., Liu, H.F., Wang, C.H., Wu, L., Huang, J.Z. and Guo, C. (2006) Tensile Behavior and Morphology of Differently Degummed Silkworm (Bombyx mori) Cocoon Silk Fibres. Materials Letters, 60, 919-925.

[44]   Holland, C., Terry, A.E., Porter, D. and Vollrath, F. (2007) Natural and Unnatural Silks. Polymer, 48, 3388-3392.