IJOC  Vol.4 No.4 , December 2014
11C-Labeling of the C(1)-C(10) Dihydroxy Acid Moiety for the Study on the Synthesis of Kulokekahilide-2 PET Tracer
11C-labeled C1-C10 partial structure of kulokekahilide-2 (1) was successfully synthesized based on Pd0-mediated rapid C-[11C]methylation using [11C]methyl iodide and pinacol alkenylboronate. The preparation of organoboron intermediate via olefin cross-metathesis is also a crucial procedure for the synthesis of 11C-labeling C1-C10 dihy-droxy acid moiety of 1.

Cite this paper
Han, C. , Doi, H. , Kimura, J. , Nakao, Y. and Suzuki, M. (2014) 11C-Labeling of the C(1)-C(10) Dihydroxy Acid Moiety for the Study on the Synthesis of Kulokekahilide-2 PET Tracer. International Journal of Organic Chemistry, 4, 269-277. doi: 10.4236/ijoc.2014.44029.
[1]   Nakao, Y., Yoshida, W.Y., Takada, Y., Kimura, J., Yang, L., Susan, L.M. and Scheuer, P.J. (2004) Kulokekahilide-2, a Cytotoxic Depsipeptide from a Cephalaspidean Mollusk Philinopsisspeciosa. Journal of Natural Products, 67, 1332-1340.

[2]   Suenaga, K., Mutou, T., Shibata, T., Itoh, T., Kigoshi, H. and Yamada, K. (1996) Isolation and Stereostructure of Aurilide, a Novel Cyclodepsipeptide from the Japanese Sea Hare Dolabellaauricularia. Tetrahedron Letters, 37, 6771-6774.

[3]   Suenaga, K., Mutou, T., Shibata, T., Itoh, T., Fujita, T., Takada, N., Hayamizu, K., Takagi, M., Irifune, T., Kigoshi, H. and Yamada, K. (2004) Aurilide, a Cytotoxic Depsipeptide from the Sea Hare Dolabellaauricularia: Isolation, Structure Determination, Synthesis, and Biological Activity. Tetrahedron, 60, 8509-8527.

[4]   Tripathi, A., Puddick, J., Prinsep, M.R., Rottmann, M. and Tan, L.T. (2010) Lagunamides A and B: Cytotoxic and Antimalarial Cyclodepsipeptides from the Marine Cyanobacterium Lyngbyamajuscule. Journal of Natural Products, 73, 1810-1814.

[5]   Umehara, M., Negishi, T., Maehara, Y., Nakao, Y. and Kimura, J. (2013) Stereochemical Analysis and Cytotoxicity of Kulokekahilide-2 and Its Analogues. Tetrahedron, 69, 3045-3053.

[6]   Nagarajan, M., Maruthanayagam, V. and Sundararaman, M. (2012) A Review of Pharmacological and Toxicological Potentials of Marine Syanobacterial Metabolites. Journal of Applied Toxicology, 32, 153-185.

[7]   Sato, S., Murata, M., Orihara, T., Shirakawa, T., Suenaga, K., Kigoshi, H. and Uesugi, M. (2011) Marine Natural Product Aurilide Activates the OPA1-Mediated Apoptosis by Binding to Prohibitin. Chemistry & Biology, 18, 131-139.

[8]   Williams, P.G., Yoshida, W.Y., Quon, M.K., Moore, R.E. and Paul, V.J. (2003) The Structure of Palau’amide, a Potent Cytotoxin from a Species of the Marine Cyanobacterium Lyngbya. Journal of Natural Products, 66, 1545-1549.

[9]   Sugiyama, H., Watanabe, A., Teruya, T. and Suenaga, K. (2009) Synthesis of Palau’amide and Its Diastereomers: Confirmation of Its Stereostructure. Tetrahedron Letters, 50, 7343-7345.

[10]   Rowland, M. (2012) Microdosing: A Critical Assessment of Human Data. Journal of Pharmaceutical Sciences, 101, 4067-4074.

[11]   Suzuki, M., Doi, H., Bjorkman, M., Andersson, Y., Langstrom, B., Watanabe, Y. and Noyori, R. (1997) Rapid Coupling of Methyl Iodide with Aryltributylstannanes Mediated by Palladium(0) Complexes: A General Protocol for the Synthesis of 11CH3-Labeled PET Tracers. Chemistry—A European Journal, 3, 2039-2042.

[12]   Doi, H., Ban, I., Nonoyama, A., Sumi, K., Kuang, C., Hosoya, T., Tsukada, H. and Suzuki, M. (2009) Palladium(0)-Mediated Rapid Methylation and Fluoromethylation on Carbon Frameworks by Reacting Methyl and Fluoromethyl Iodide with Aryl and AlkenylBoronic Acid Esters: Useful for the Synthesis of [11C]CH3-C- and [18F]FCH2-C-Containing PET Tracers (PET=Positron Emission Tomography). Chemistry—A European Journal, 15, 4165-4171.

[13]   Kanazawa, M., Furuta, K., Doi, H., Mori, T., Minami, T., Ito, S. and Suzuki, M. (2011) Synthesis of an Acromelic Acid A Analog-Based 11C-Labeled PET Tracer for Exploration of the Site of Action of Acromelic Acid A in Allodynia Induction. Bioorganic & Medicinal Chemistry Letters, 21, 2017-2020.

[14]   Takashima-Hirano, M., Takashima, T., Katayama, Y., Wada, Y., Sugiyama, Y., Watanabe, Y., Doi, H. and Suzuki, M. (2011) Efficient Sequential Synthesis of PET Probes of the COX-2 Inhibitor [11C]Celecoxib and Its Major Metabolite [11C]SC-62807 and in Vivo PET Evaluation. Bioorganic & Medicinal Chemistry, 19, 2997-3004.

[15]   Suzuki, M., Takashima-Hirano, M., Koyama, H., Yamaoka, T., Sumi, K., Nagata, H., Hidaka, H. and Doi, H. (2012) Efficient Synthesis of [11C]H-1152, a PET Probe Specific for Rho-Kinases, Highly Potential Targets in Diagnostic Medicine and Drug Development. Tetrahedron, 68, 2336-2341.

[16]   Suzuki, M., Takashima-Hirano, M., Ishii, H., Watanabe, C., Sumi, K., Koyama, H. and Doi, H. (2014) Synthesis of 11C-Labeled Retinoic Acid, [11C]ATRA, via an Alkenylboron Precursor by Pd(0)-Mediated Rapid C-[11C]Methylation. Bioorganic & Medicinal Chemistry Letters, 24, 3622-3625.

[17]   Suzuki, M., Doi, H., Koyama, H., Zhang, Z., Hosoya, T., Onoe, H. and Watanabe, Y. (2014) Pd0-Mediated Rapid Cross-Coupling Reactions, the Rapid C-[11C]Methylations, Revolutionarily Advancing the Syntheses of Short-Lived PET Molecular Probes. The Chemical Record, 14, 516-541.

[18]   Evans, D.A., Dow, R.L., Shih, T.L., Takacs, J.M. and Zahler, R. (1990) Total Synthesis of the Polyether Antibiotic Ionomycin. Journal of the American Chemical Society, 112, 5290-5313.

[19]   Chatterjee, A.K., Choi, L., Sanders, D.P. and Grubbs, R.H. (2003) A General Model for Selectivity in Olefin Cross Metathesis. Journal American Chemical Society, 125, 11360-11370.

[20]   Dubowchik, G.M., Vrudhula, V.M., Dasgupta, B., Ditta, J., Chen, T., Sheriff, S., Sipman, K., Witmer, M., Tredup, J., Vyas, D.M., Verdoorn, T.A., Bollini, S. and Vinitsky, A. (2001) 2-Aryl-2,2-difluoroacetamide FKBP12 Ligands: Synthesis and X-Ray Structural Studies. Organic Letters, 3, 3987-3990.

[21]   Trnka, T.M. and Grubbs, R.H. (2001) The De-velopment of L2X2Ru=CHR Olefin Metathesis Catalysts: An Organo-metallic Success Story. Accounts of Chemical Research, 34, 18-29.

[22]   Scholl, M., Ding, S., Lee, C.W. and Grubbs, R.H. (1999) Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands. Organic Letters, 1, 953-956.

[23]   Garber, S.B., Kingsbury, J.S., Gray, B.L. and Hoveyda, A.H. (2000) Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts. Journal American Chemical Society, 122, 8168-8179.

[24]   Morrill, C. and Grubbs, R.H. (2003) Synthesis of Functionalized Vinyl Boronates via Ruthenium-Catalyzed Olefin Cross-Metathesis and Subsequent Conversion to Vinyl Halides. Journal of Organic Chemistry, 68, 6031-6034.

[25]   Morrill, C., Funk, W. and Grubbs, R.H. (2004) Synthesis of Tri-Substituted Vinyl Boronates via Ruthenium-Catalyzed Olefin Cross-Metathesis. Tetrahedron Letters, 45, 7733-7736.

[26]   Funk, T., Efskind, J. and Grubbs, R.H. (2005) Chemoselective Construction of Substituted Conjugated Dienes Using an Olefin Cross-Metathesis Protocol. Organic Letters, 7, 187-190.

[27]   Fuwa, H., Saito, A. and Sasaki, M. (2010) A Concise Total Synthesis of (+)-Neopeltolide. Angewandte Chemie International Edition, 49, 3041-3044.

[28]   Fuwa, H., Suzuki, T., Kubo, H., Yamori, T. and Sasaki, M. (2011) Total Synthesis and Biological Assessment of (-)- Exiguolide and Analogues. Chemistry—A European Journal, 17, 2678-2688.

[29]   Coquerel, Y. and Rodriguez, J. (2008) Microwave-Assisted Olefin Metathesis. European Journal of Organic Chemistry, 7, 1125-1132.

[30]   Michaut, A., Boddaert, T., Coquerel, Y. and Rodriguez, J. (2007) Reluctant Cross-Metathesis Reactions: The Highly Beneficial Effect of Microwave Irradiation. Synthesis, 18, 2867-2871.

[31]   Fuwa, H., Noto, K. and Sasaki, M. (2010) Stereoselective Synthesis of Substituted Tetrahydropyrans via Domino Olefin Cross-Metathesis/Intramolecular Oxa-Conjugate Cyclization. Organic Letters, 12, 1636-1639.

[32]   Suzuki, M., Sumi, K., Koyama, H., Siqin, Hosoya, M., Takashima-Hirano, M. and Doi, H. (2009) Pd0-Mediated Rapid Coupling between Methyl Iodide and Heteroarylstannanes: An Efficient and General Method for the Incorporation of a Positron-Emitting 11C Radionuclide into Heteroaromatic Frameworks. Chemistry A European Journal, 15, 12489-12495.