WSN  Vol.1 No.2 , July 2009
Centralized Quasi-Static Channel Assignment for Multi-Radio Multi-Channel Wireless Mesh Networks
Abstract: Employing multiple channels in wireless multihop networks is regarded as an effective approach to increas-ing network capacity. This paper presents a centralized quasi-static channel assignment for multi-radio multi-channel Wireless Mesh Networks (WMNs). The proposed channel assignment can efficiently utilize multiple channels with only 2 radios equipped on each mesh router. In the scheme, the network end-to-end traffics are first modeled by probing data at wireless access points, and then the traffic load between each pair of neighboring routers is further estimated using an interference-aware estimation algorithm. Having knowledge of the expected link load, the scheme assigns channels to each radio with the objective of mini-mizing network interference, which as a result greatly improves network capacity. The performance evalua-tion shows that the proposed scheme is highly responsive to varying traffic conditions, and the network per-formance under the channel assignment significantly outperforms the single-radio IEEE 802.11 network as well as the 2-radio WMN with static 2 channels.
Cite this paper: nullJ. REN and Z. QIU, "Centralized Quasi-Static Channel Assignment for Multi-Radio Multi-Channel Wireless Mesh Networks," Wireless Sensor Network, Vol. 1 No. 2, 2009, pp. 104-111. doi: 10.4236/wsn.2009.12016.

[1]   Mesh Networks Inc.

[2]   I. F. Akyildiz, X. D. Wang, and W. L. Wang, “Wireless mesh networks: A survey,” Computer Networks, Vol. 47, No. 4, pp. 445–487, 2005.

[3]   Mesh Networking Forum, “Building the business case for implementation of wireless mesh networks,” Mesh Net-working Forum 2004, San Francisco, CA, October 2004.

[4]   R. Chandra and P. Bahl, “MultiNet: Connecting to multi-ple IEEE 802.11 networks using a single wireless card,” INFOCOM, Vol. 2, pp. 882–893, 2004.

[5]   I. Wormsbecker and C. Williamson, “On channel selec-tion strategies for multi-channel MAC protocols in wire-less ad hoc networks,” IEEE Conference on Wireless and Mobile Computing, Networking and Communications (WiMob’2006), pp. 212–220, 2006.

[6]   J. So and N. Vaidya, “Multi-channel MAC for ad hoc networks: Handling multi-channel hidden terminals using a single transceiver,” MobiHoc’04, May 24–26, 2004.

[7]   A. Raniwala, K. Gopalan, and T. Chiueh, “Centralized channel assignment and routing algorithms for multi- channel wireless mesh networks,” ACM Mobile Com-puting and Communications Review, Vol. 8, No. 2, pp. 50–65, 2004.

[8]   J. Tang, G. Xue, and W. Zhang, “Interference-aware to-pology control and QoS routing in multi-channel wireless mesh networks,” ACM SIGMOBILE, Urbana-Champaign, IL, pp. 68–77, 2005.

[9]   A. Subramanian, H. Gupta, and S. R. Das, “Mini-mum-interference channel assignment in multi-radio wire-less mesh networks,” Proceedings of 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks ( SECON’'07), pp. 481–490, June 18–21, 2007.

[10]   “ns-2 simulator,”

[11]   R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop wireless mesh networks,” in Proceedings of ACM MOBICOM, pp. 114–128, September 2004.

[12]   C. Perkins, E. Royer, and S. Das, “Ad hoc on demand distance vector (AODV) routing,” IETF Internet Draft, draft-ietf-manet-aodv2-10.txt, January 24, 2002.