ACS  Vol.4 No.5 , December 2014
Consistency in Z-R Relationship Variability Regardless Precipitating Systems, Climatic Zones Observed from Two Types of Disdrometer

Data from rain Drop Size Distributions gathered on five sites in Africa as well as those of the pilot site in Kourou (French Guyana, South America), located in different climatic zones, and collected by two types of disdrometer (the impact JW RD-69 disdrometer and the Optical Spectro-Pluviometer, OSP) are used to study the consistency of the reflectivity factor-rain rate at the ground (Z-R) relationship variability. The results clearly confirm that the relationship Z-R knows a large spatial variability, from a type of precipitation to another and within the same precipitation regardless the type of disdrometer used for DSD measurements. Base on the similarity of the relations reflectivity factor-rain rate and ratio median volume diameter over the total number of drops-rain rate, the variability of the Z-R coefficients (A, b) through the simultaneously implication of the size and number of drops which characterize the DSD was exhibited. It was shown that the relationships A-α and b-β designed to understand the involvement of parameters D0 and NT of DSD in the variability of the relationship Z-R are similar regardless the types of disdrometer used. However, the relations A-α in the Sahelian region appear to deviate from those of Guinean, equatorial and Soudanian zones. The plausible reasons were discussed.

Cite this paper: Bamba, B. , Ochou, A. , Zahiri, E. and Kacou, M. (2014) Consistency in Z-R Relationship Variability Regardless Precipitating Systems, Climatic Zones Observed from Two Types of Disdrometer. Atmospheric and Climate Sciences, 4, 941-955. doi: 10.4236/acs.2014.45083.

[1]   Marshall, J.S. and Palmer, W.M.K. (1948) The Distribution of Raindrops with Size. Journal of Meteorology, 5, 165-166.<0165:TDORWS>2.0.CO;2

[2]   Sauvageot, H. and Lacaux, J.P. (1995) The Shape of Averaged Drop Size Distributions. The Journal of the Atmospheric Sciences, 52, 1070-1083.<1070:TSOADS>2.0.CO;2

[3]   Ochou, A.D., Koffi, M. and Sauvageot, H. (1999) Climatologie des distributions des gouttes de pluie en zone c?tière ivoirienne. Publications de l’Association Internationale de climatologie, 12, 252-260.

[4]   Rosenfeld, D. and Ulbrich, C.W. (2003) Cloud Microphysical Properties, Processes, and Rainfall Estimation Opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. Meteorological Monographs, 30, 237-258.

[5]   Nzeukou, A., Sauvageot, H., Ochou, A.D. and Kebe, C.M.F. (2004) Raindrop Size Distribution and Radar Parameters at Cape Verde. J. Appl. Meteor., 43, 90-105.

[6]   Kozu, K., Reddy, K., Mori, S., Thurai, M., Ong, J.T., Rao, D.N. and Shimomai, T. (2006) Seasonal and Diurnal Variations of Raindrop Size Distribution in Asian Monsoon Region. Meteorological Society of Japan, 84, 195-209.

[7]   Islam, T., Rico-Ramirez, A.M., Thurai, M. and Han, D. (2012) Characteristics of Raindrop Spectra as Normalized Gamma Distribution from a Joss-Waldvogel Disdrometer. Atmospheric Research, 108, 57-73.

[8]   Marshall, J.S. (1969) Power-Law Relations in Radar Meteorology. Journal of Meteorology, 5, 165-166.<0165:TDORWS>2.0.CO;2

[9]   Battan, L.J. (1973) Radar Observation of the Atmosphere. University of Chicago Press, Chicago, 323 p.

[10]   Wilson, J.W. and Brandes, A.E. (1979) Radar Measurement of Rainfall—A Summary. Bulletin of the American Meteorological Society, 60, 1048-1058.<1048:RMORS>2.0.CO;2

[11]   Austin, P.M. (1987) Relation between Measured Radar Reflectivity and Surface Rainfall. Monthly Weather Review, 115, 1053-1070.

[12]   Uijlenhoet, R. (2001) Raindrop Size Distributions and Radar Reflectivity—Rain Rate Relationships for Radar Hydrology. Hydrology and Earth System Sciences, 5, 615-627.

[13]   Ochou, A.D., Nzeukou, A. and Sauvageot, H. (2007) Parametrization of Drop Size Distribution with Rain Rate. Atmospheric Research, 84, 58-66.

[14]   Atlas, D., Ulbrich, C.W., Marks Jr., F.D., Amitai, E. and Williams, C.R. (1999) Systematic Variation of Drop Size and Radar-Rainfall Relations. Journal of Geophysical Research, 104, 6155-6169.

[15]   Maki, M., Keenam, T.D., Sasaki, Y. and Nakamura, K. (2001) Characteristics of the Raindrop Size Distribution in Continental Tropical Squall Lines Observed in Darwin, Australia. Journal of Applied Meteorology, 40, 1393-1412.

[16]   Moumouni, S., Gosset, M. and Houngninou, E. (2008) Main Features of Rain Drop Size Distributions Observed in Benin, West Africa, with Optical Disdrometers. Geophysical Research Letters, 35, Article ID: L23807.

[17]   Ochou, A.D., Zahiri, E.P., Bamba, B. and Koffi, M. (2011) Understanding the Variability of Z-R Relationships Caused by Natural Variations in Raindrop Size Distributions (DSD): Implication of Drop Size and Number. Atmospheric and Climate Sciences, 1, 147-164.

[18]   Waldvogel, A. (1974) The N0 Jump in Raindrop Spectra. Journal of the Atmospheric Sciences, 31, 1067-1078.<1067:TJORS>2.0.CO;2

[19]   Balakrishnan, N., Zrnic, D.S., Goldhirsh, J. and Rowland, J. (1989) Comparison of Simulated Rain Rate from Disdrometer Data Employing Polarimetric Radar Algorithms. Journal of Atmospheric and Oceanic Technology, 6, 476-486.<0476:COSRRF>2.0.CO;2

[20]   Tokay, A. and Short, D.A. (1996) Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds. Journal of Applied Meteorology, 35, 355-371.<0355:EFTRSO>2.0.CO;2

[21]   Yuter, S.E. and Houze, R.A. (1997) Measurements of Raindrop Size Distribution over the Pacific Warm Pool and Implementations for Z-R Relations. Journal of Applied Meteorology, 36, 847-867.<0847:MORSDO>2.0.CO;2

[22]   Ulbrich, C.W. and Atlas, D. (2002) On the Separation of Tropical Convective and Stratiform Rains. Journal of Applied Meteorology, 41, 188-195.<0188:OTSOTC>2.0.CO;2

[23]   Uijlenhoet, R., Steiner, M. and Smith, J.A. (2003) Variability of Raindrop Size Distributions in a Squall Line and Implications for Radar Rainfall Estimation. Journal of Hydrometeorology, 4, 43-61.<0043:VORSDI>2.0.CO;2

[24]   Lee, G.W. and Zawadzki, I. (2005) Variability of Drop Size Distributions: Time-Scale Dependence of the Variability and Its Effects on Rain Estimate. Journal of Applied Meteorology, 44, 241-255.

[25]   Narayana Rao, T., Narayana Rao, D. and Mohan, K. (2001) Classification of Tropical Precipitating Systems and Associated Z-R Relationships. Journal of Geophysical Research, 106D, 17699-17711.

[26]   Tenorio, R.S., Moraes, M.C.S. and Sauvageot, H. (2012) Raindrop Size Distribution and Radar Parameters in Coastal Tropical Rain Systems of Northeastern Brazil. Journal of Applied Meteorology and Climatology, 51, 1960-1970.

[27]   Huggel, A., Schmid, W. and Waldvogel, A. (1996) Raindrop Size Distributions and the Radar Bright Band. Journal of Applied Meteorology, 35, 1688-1701.<1688:RSDATR>2.0.CO;2

[28]   Steiner, M., Smith, J.A. and Uijlenhoet, R. (2004) A Microphysical Interpretation of Radar Reflectivity-Rain Rate Relationships. Journal of the Atmospheric Sciences, 61, 1114-1131.<1114:AMIORR>2.0.CO;2

[29]   Mathon, V. and Laurent, H. (2001) Life Cycle of the Sahelian Mesoscale Convective Cloud Systems. Quarterly Journal of the Royal Meteorological Society, 127, 377-406.

[30]   Depraetere, C., Gosset, M., Ploix, S. and Laurent, H. (2009) The Organization and Kinematics of Tropical Rainfall Systems Ground Tracked at Mesoscale with Gages: First Results from the Campaigns 1999-2006 on the Upper Oueme Valley (Benin). Journal of Hydrology, 375, 143-160.

[31]   Campos, E. and Zawadzki, I. (2000) Instrumental Uncertainties in Z-R Relations. Journal of Applied Meteorology, 39, 1088-1102.<1088:IUIZRR>2.0.CO;2

[32]   Checa-Garcia, R., Tokay, A. and Tapiador, F.J. (2014) Binning Effects on in Situ Raindrop Size Distribution Measurements. Atmos. Meas. Tech. Discuss., 7, 2339-2379.

[33]   Joss, J. and Waldvogel, A. (1967) Ein Spektrograph für Niederschlagstropfen mit automatischer Auswertung. Pure and Applied Geophysics, 68, 240-246.

[34]   Joss, J. and Waldvogel, A. (1969) Raindrop Size Distribution and Sampling Size Errors. Journal of the Atmospheric Sciences, 26, 566-569.<0566:RSDASS>2.0.CO;2

[35]   Campistron, B., Despaux, G.R. and Lacaux, J.P. (1987) A Microcomputer Data-Acquisition System for Real-Time Processing and Raindrop Size Distribution Position with the RD-69 Disdrometer. Journal of Atmospheric and Oceanic Technology, 4, 536-540.<0536:AMDASF>2.0.CO;2

[36]   Redelsperger, J.L., Thorncroft, C., Diedhiou, A., Lebel, T., Parker, D. and Polcher, J. (2006) African Monsoon Multidisciplinary Analysis (AMMA): An International Research Project and Field Campaign. Bulletin of the American Meteorological Society, 88, 1739-1746.

[37]   Salles, C., Creutin, J.D. and Sempere-Torres, D. (1998) The Optical Spectro-Pluviometer Revisited. Journal of Atmospheric and Oceanic Technology, 15, 1215-1222.<1215:TOSR>2.0.CO;2

[38]   Delahaye, J.Y., Barthes, L., Gole, P., Lavergnat, J. and Vinson, J.P. (2005) A Dual-Beam Spectro-Pluviometer Concept. Journal of Hydrology, 328, 110-120.

[39]   L?ffler-Mang, M. and Joss, J. (2000) An Optical Disdrometer for Measuring Size and Velocity of Hydrometeors. Journal of Atmospheric and Oceanic Technology, 17, 130-139.

[40]   Chapon, B., Delrieu, G., Gosset, M. and Boudevillain, B. (2008) Variability of Rain Drop Size Distribution and Its Effect on the Z-R Relationship: A Case Study for Intense Mediterranean Rainfall. Atmospheric Research, 87, 52-65.

[41]   Gosset, M., Zahiri, E.P. and Moumouni, S. (2010) Rain Drop Size Distribution Variability and Impact on X-Band Polarimetric Radar Retrieval: Results from the AMMA Campaign in Benin. Quarterly Journal of the Royal Meteorological Society, 136, 243-256.

[42]   Sheppard, B.E. and Joe, P.I. (1993) Comparison of Raindrop Size Distribution Measurements by a Joss-Waldvogel Disdrometer, a PMS 2DG Spectrometer, and a POSS Doppler Radar. Journal of Atmospheric and Oceanic Technology, 11, 874-887.<0874:CORSDM>2.0.CO;2

[43]   Testud, J., Oury, S., Black, R.A., Amayenc, P. and Dou, X.K. (2001) The Concept of Normalised Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing. Journal of Applied Meteorology, 40, 1118-1140.<1118:TCONDT>2.0.CO;2

[44]   Janicot, S. (1992) Spatiotemporal Variability of West African Rainfall. Part I: Regionalization and Typings. Journal of Climate, 5, 489-497.<0489:SVOWAR>2.0.CO;2

[45]   Nicholson, S.E., Some, B. and Kone, B. (2000) An Analysis of Recent Rainfall Conditions in West Africa, Including the Rainy Seasons of the 1997 El Nino and the 1998 La Nina Years. Journal of Climate, 13, 2628-2640.<2628:AAORRC>2.0.CO;2

[46]   Djomou, Z.Y., Monkam, D. and Lenouo, A. (2009) Spatial Variability of Rainfall Regions in West Africa during the 20th Century. Atmospheric Science Letters, 10, 9-13.

[47]   Mathon, V., Laurent, H. and Lebel, T. (2002) Mesoscale Convective System Rainfall in the Sahel. Journal of Applied Meteorology, 41, 1081-1092.<1081:MCSRIT>2.0.CO;2

[48]   McCollum, J.R., Gruber, A. and Ba, M.B. (2000) Discrepancy between Gauges and Satellite Estimates of Rainfall in Equatorial Africa. Journal of Applied Meteorology, 39, 666-679.

[49]   Perez, C.S., Nickovic, S., Baldasano, J.M., Sicard, M., Rocadenbosch, F. and Cachorro, V.E. (2006) A Long Saharan Dust Event over the Western Mediterranean: Lidar, Sun Photometer Observations, and Regional Dust Modeling. Journal of Geophysical Research, 111, Article ID: D15214.

[50]   Foamouhoue, A.K., Baldasano, J.M., Agulló, E.C., Diongue-Niang, A., García-Pando, C.P., Poolman, E. and Thomson, M. (2009) Activités de recherche-développement de l’OMM sur la qualité de l’air, le temps et le climat au profit de l’Afrique. WMO Bulletin, 58, 41-47.

[51]   Caracciolo, C., Prodi, F. and Uijlenhoet, R. (2006) Comparison between Pludix and Impact/Optical Disdrometers during Rainfall Measurements Campaigns. Atmospheric Research, 82, 137-163.

[52]   Ulbrich, C.W. (1983) Natural Variations in the Analytical Form of the Raindrop Size Distribution. Journal of Climate and Applied Meteorology, 22, 1764-1775.<1764:NVITAF>2.0.CO;2

[53]   Ulbrich, C.W. (1985) The Effects of Drop Size Distribution Truncation on Rainfall Integral Parameters and Empirical Relationships. Journal of Climate and Applied Meteorology, 24, 580-590.<0580:TEODSD>2.0.CO;2

[54]   Feingold, G. and Levin, Z. (1986) The Lognormal Fit to Raindrop Spectra from Frontal Convective Clouds in Israel. Journal of Climate and Applied Meteorology, 25, 1346-1363.<1346:TLFTRS>2.0.CO;2

[55]   Ulbrich, C.W. and Atlas, D. (1998) Rainfall Microphysics and Radar Properties: Analysis Methods for Drop Size Spectra. Journal of Applied Meteorology, 37, 912-923.<0912:RMARPA>2.0.CO;2