JQIS  Vol.4 No.4 , December 2014
Time Dependent Entropy and Decoherence in a Modified Quantum Damped Harmonic Oscillator
Abstract: The time dependence of probability and Shannon entropy of a modified damped harmonic oscillator is studied by using single and double Gaussian wave functions through the Feynman path method. We establish that the damped coefficient as well as the system frequency and the distance separating two consecutive waves of the initial double Gaussian function influences the coherence of the system and can be used to control its decoherence.
Cite this paper: Pelap, F. , Fomethe, A. , Fotue, A. and Tabue, M. (2014) Time Dependent Entropy and Decoherence in a Modified Quantum Damped Harmonic Oscillator. Journal of Quantum Information Science, 4, 214-226. doi: 10.4236/jqis.2014.44020.

[1]   Isar, A. (2005) Decoherence in Open Quantum Systems. Romanian Journal of Physics, 50, 147-156.

[2]   Walls, D.F. and Millburn, G.J. (1994) Quantum Optics. Springer, Heildelberg.

[3]   Scully, M.O. and Zubairy, M.S. (1997) Quantum Optics. Cambridge University Press, Cambridge.

[4]   Sargent III, M., Scully, M.O. and Lamb Jr., W.E. (1974) Laser Physics. Addison-Wesley, Reading.

[5]   Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University, Cambridge, UK.

[6]   Karlsson, E.B. (1998) Coherence and Decoherence of Positive Particle States in Solids. Physica Scripta, 76, 179.

[7]   Chatzidimitriou-Dreismann, C.A., Abdul-Redah, T. and Kolaric, B. (2001) Entanglement of Protons in Organic Molecules: An Attosecond Neutron Scattering Study of C [Bond] H Bond Breaking. Journal of the American Chemical Society, 123, 11945-11951.

[8]   Chatzidimitriou-Dreismann, C.A., Abdul Redah, T., Streffer, R.M. and Mayers, J. (1997) Anomalous Deep Inelastic Neutron Scattering from Liquid H2O-D2O: Evidence of Nuclear Quantum Entanglement. Physical Review Letters, 79, 2839-2842.

[9]   Krzywicki, A. (1993) Coherence and Decoherence in Radiation off Colliding Heavy Ions. Physical Review D, 48, 5190-5195.

[10]   Zeh, H.D. (1986) Emergence of a Classical Universe from Quantum Gravity and Cosmology. Physics Letters A, 116, 9-12.

[11]   Zeh, H.D. (1988) Time in Quantum Gravity. Physics Letters A, 126, 311-317.

[12]   Zeh, H.D. (1992) The Physical Basis of the Direction of Time. Springer, Berlin.

[13]   Kiefer, C. (1987) Emergence of a Classical Universe from Quantum Gravity and Cosmology. Classical and Quantum Gravity, 4, 1369-1382.

[14]   Halliwell, J. (1989) Decoherence in Quantum Cosmology. Physical Review D, 39, 2912-2923.

[15]   Barvinsky, A.O. and Kamenshchik, A.Y. (1990) Preferred Basis in the Many-Worlds Interpretation of Quantum Mechanics and Quantum Cosmology. Classical and Quantum Gravity, 7, 2285-2293.

[16]   Barvinsky, A.O. and Kamenshchik, A.Y. (1995) Preferred Basis in Quantum Theory and the Problem of Classicalizationof the Quantum Universe. Physical Review D, 52, 743-757.

[17]   Brandenberger, R., Laflamme, R. and Mijic, M. (1990) Modern Physics Letters A, 5, 2311.

[18]   Paz, J.-P. and Sinha, S. (1991) Decoherence and Back Reaction: The Origin of the Semiclassical Einstein Equations. Physical Review D, 44, 1038-1049.

[19]   Paz, J.-P. and Sinha, S. (1992) Decoherence and Back Reaction in Quantum Cosmology: Multidimensional Minisuperspace Examples. Physical Review D, 45, 2823-2842.

[20]   Castagnino, M.A., Gangui, A., Mazzitelli, F.D. and Tkachev, I.I. (1993) Third Quantization, Decoherence and the Interpretation of Quantum Gravity in Mini-Super-Space. Classical and Quantum Gravity, 10, 2495-2504.

[21]   Kefer, C. and Zeh, H.D. (1995) Arrow of Time in a Recollapsing Quantum Universe. Physical Review D, 51, 4145-4153.

[22]   Mensky, M.B. and Novikov, I.D. (1996) Decoherence Caused by Topology in a Time-Machine Spacetime. International Journal of Modern Physics D, 5, 1-27.

[23]   Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.O. and Zeh, H.D. (1996) Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin.

[24]   Paz, J.P. and Zurek, W.H. (2001) In Coherent Atomic Matter Waves. In: Kaiser, R., Westbrook, C. and David F., Eds., Les Houches Session LXXII, Springer, Berlin, 533-614.

[25]   Zurek, W.H. (2003) Decoherence, Einselection, and the Quantum Origins of the Classical. Reviews of Modern Physics, 75, 715-775.

[26]   Morikawa, M. (1990) Quantum Decoherence and Classical Correlation in Quantum Mechanics. Physical Review D, 42, 2929-2932.

[27]   Habib, S. and Laflamme, R. (1990) Wigner Function and Decoherence in Quantum Cosmology. Physical Review D, 42, 4056-4065.

[28]   Alicki, R. (2004) Pure Decoherence in Quantum Systems. Open Systems & Information Dynamics (OSID), 11, 53-61.

[29]   Joos, E., Zeh, H.D., Kiefer, C., Giulini, D., Kupsch, J. and Stamatescu, I.O. (2003) Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin.

[30]   Gamble, J.K. and Lindner, J.F. (2009) Demystifying Decoherence and the Master Equation of Quantum Brownian Motion. American Journal of Physics, 77, 244.

[31]   Zuo, J. and O’Connell, R.F. (2004) Effect of an External Field on Decoherence: Part II. Journal of Modern Optics, 51, 821-832.

[32]   Ozcan, O., Akturk, E. and Sever, R. (2008) Time Dependence of Joint Entropy of Oscillating Quantum Systems. International Journal of Theoretical Physics, 47, 3207-3218.

[33]   Isar, A. (2007) Quantum Decoherence of a Damped Harmonic Oscillator. Optics and Spectroscopy, 103, 252-257.

[34]   Lindblad, G. (1976) Brownian Motion of a Quantum Harmonic Oscillator. Reports on Mathematical Physics, 10, 393-406.

[35]   Sandulescu, A. and Scutaru, H. (1987) Open Quantum Systems and the Damping of Collective Models in Deep Inelastic Collisions. Annals of Physics, 173, 277-317.

[36]   Elran, Y. and Brumer, P. (2004) Decoherence in an Inharmonic Oscillator Coupled to a Thermal Environment: A Semi-Classical Forward-Backward Approach. The Journal of Chemical Physics, 121, 2673.

[37]   Chruscinski, D. and Jurkowski, J. (2010) Memory in a Nonlocally Damped Oscillator. In: Accardi, L., Freudenberg, W. and Ohya, M., Eds., Quantum Bio-Informatics III, Tokyo University of Science, Tokyo, 155-166.

[38]   Bateman, H. (1931) On Dissipative Systems and Related Variational Principles. Physical Review, 38, 815-819.

[39]   Caldirola, P. (1941) Quantum Analysis of Modified Caldirola-Kanai Oscillator Model for Electromagnetic Fieldsin Time-Varying. IL Nuovo Cimento, 18, 393-400.

[40]   Feynman, R.P. (1948) Space-Time Approach to Non-Relativistic Quantum Mechanics. Reviews of Modern Physics, 20, 367-387.

[41]   Fai, L.C., Fomethe, A., Mborong, V.B., Fotue, A.J., Domngang, S., Issofa, N. and Tchoffo, M. (2008) Polaron State Screening by Plasmons in a Spherical Nanocrystal. Journal of Low Temperature Physics, 152, 71-87.

[42]   Um, C.I., Yeon, K.H. and George, T.F. (2002) The Quantum Damped Harmonic Oscillator. Physics Reports, 362, 63-192.

[43]   Um, C.I., Yeon, K.H. and Kahng, W.H. (1987) The Quantum Damped Driven Harmonic Oscillator. Journal of Physics A: Mathematical and General, 20, 611-626.

[44]   Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and Path Integrals. McGraw-Hill, New York.