[1] Emanuel, K.A. (1986) An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance. Journal of Atmospheric Sciences, 43, 585-605.
http://dx.doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
[2] Montgomery, M.T. and Farrell, B.F. (1993) Tropical Cyclone Formation. Journal of Atmospheric Sciences, 50, 285-310. http://dx.doi.org/10.1175/1520-0469(1993)050<0285:TCF>2.0.CO;2
[3] Kieu, C.Q. and Zhang, D.-L. (2008) Genesis of Tropical Storm Eugene (2005) from Merging Vortices Associated with ITCZ Breakdowns. Part I: Observational and Modeling Analyses. Journal of Atmospheric Sciences, 65, 3419-3439. http://dx.doi.org/10.1175/2008JAS2605.1
[4] Mao, J. and Wu, G. (2011) Barotropic Process Contributing to the Formation and Growth of Tropical Cyclone Nargis. Advances in Atmospheric Sciences, 28, 483-491.
http://dx.doi.org/10.1007/s00376-010-9190-4
[5] Ooyama, K. (1969) Numerical Simulation of the Life Cycle of Tropical Cyclones. Journal of Atmospheric Sciences, 26, 3-40. http://dx.doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2
[6] Montgomery, M.T. and Enagonio, J. (1998) Tropical Cyclogenesis via Convectively Forced Vortex Rossby Waves in a Three-Dimensional Quasigeostrophic Model. Journal of Atmospheric Sciences, 55, 3176-3207. http://dx.doi.org/10.1175/1520-0469(1998)055<3176:TCVCFV>2.0.CO;2
[7] Li, T., Ge, X., Wang, B. and Zhu, Y. (2006) Tropical Cyclogenesis Associated with Rossby Wave Energy Dispersion of a Preesxisting Typhoon. Part II: Numerical Simulations. Journal of Atmospheric Sciences, 63, 1390-1409. http://dx.doi.org/10.1175/JAS3693.1
[8] Montgomery, M.T., Wang, Z. and Dunkerton, T.J. (2010) Coarse, Intermediate and High Resolution Numerical Simulation of the Transition of a Tropical Wave Critical Layer to a Tropical Storm. Atmospheric Chemistry and Physics, 10, 10803-10827.
http://dx.doi.org/10.5194/acp-10-10803-2010
[9] Venkatesh, T.N. and Mathew, J. (2010) A Numerical Study of the Role of the Vertical Structure of Vorticity during Tropical Cyclone Genesis. Fluid Dynamics Research, 42, Article ID: 045506.
http://dx.doi.org/10.1088/0169-5983/42/4/045506
[10] Reed, K.A. and Jablonowski, C. (2011) Impact of Physical Parameterizations on Idealized Tropical Cyclones in the Community Atmosphere Model. Geophysical Research Letters, 38, Article ID: L04805. http://dx.doi.org/10.1029/2010GL046297
[11] Abarca, S.F. and Corbosiero, K.L. (2011) Secondary Eyewall Formation in WRF Simulations of Hurricanes Rita and Katrina (2005). Geophysical Research Letters, 38, Article ID: L07802.
http://dx.doi.org/10.1029/2011GL047015
[12] Xu, Y.M. (2011) The Genesis of Tropical Cyclone Bilis (2000) Associated with Cross-Equatorial Surges. Advances in Atmospheric Sciences, 28, 665-681. http://dx.doi.org/10.1007/s00376-010-9142-z
[13] Mingalev, I.V. and Mingalev, V.S. (2005) The Global Circulation Model of the Lower and Middle Atmosphere of the Earth with a Given Temperature Distribution. Mathematical Modeling, 17, 24-40. (In Russian)
[14] Mingalev, I.V., Mingalev, V.S. and Mingaleva, G.I. (2007) Numerical Simulation of Global Distributions of the Horizontal and Vertical Wind in the Middle Atmosphere Using a Given Neutral Gas Temperature Field. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 552-568.
http://dx.doi.org/10.1016/j.jastp.2006.10.005
[15] Mingalev, I.V., Mingalev, O.V. and Mingalev, V.S. (2008) Model Simulation of Global Circulation in the Middle Atmosphere for January Conditions. Advances in Geosciences, 15, 11-16.
http://dx.doi.org/10.5194/adgeo-15-11-2008
[16] Mingalev, I.V., Mingalev, V.S. and Mingaleva, G.I. (2012) Numerical Simulation of the Global Neutral Wind System of the Earth’s Middle Atmosphere for Different Seasons. Atmosphere, 3, 213-228. http://dx.doi.org/10.3390/atmos3010213
[17] Mingalev, I.V. and Mingalev, V.S. (2012) Numerical Modeling of the Influence of Solar Activity on the Global Circulation in the Earth’s Mesosphere and Lower Thermosphere. International Journal of Geophysics, 2012, Article ID: 106035, 15 pages. http://dx.doi.org/10.1155/2012/106035
[18] Mingalev, I., Mingaleva, G. and Mingalev, V. (2013) A Simulation Study of the Effect of Geomagnetic Activity on the Global Circulation in the Earth’s Middle Atmosphere. Atmospheric and Climate Sciences, 3, 8-19. http://dx.doi.org/10.4236/acs.2013.33A002
[19] Belotserkovskii, O.M., Mingalev, I.V., Mingalev, V.S., Mingalev, O.V. and Oparin, A.M. (2006) Mechanism of the Appearance of a Large-Scale Vortex in the Troposphere above a Nonuniformly Heated Surface. Doklady Earth Sciences, 411, 1284-1288.
http://dx.doi.org/10.1134/S1028334X06080277
[20] Belotserkovskii, O.M., Mingalev, I.V., Mingalev, V.S., Mingalev, O.V., Oparin, A.M. and Chechetkin, V.M. (2009) Formation of Large-Scale Vortices in Shear Flow of the Lower Atmosphere of the Earth in the Region of Tropical Latitudes. Cosmic Research, 47, 466-479.
http://dx.doi.org/10.1134/S0010952509060033
[21] Mingalev, I.V., Orlov, K.G. and Mingalev, V.S. (2012) A Mechanism of Formation of Polar Cyclones and Possibility of Their Prediction Using Satellite Observations. Cosmic Research, 50, 160-169. http://dx.doi.org/10.1134/S0010952512010066
[22] Mingalev, I.V., Orlov, K.G. and Mingalev, V.S. (2014) A Modeling Study of the Initial Formation of Polar Lows in the Vicinity of the Arctic Front. Advances in Meteorology, 2014, Article ID: 970547, 10 pages. http://dx.doi.org/10.1155/2014/970547
[23] Mingalev, I.V., Astafieva, N.M., Orlov, K.G., Chechetkin, V.M., Mingalev, V.S. and Mingalev, O.V. (2012) Numerical Simulation of Formation of Cyclone Vortex Flows in the Intertropical Zone of Convergence and Their Early Detection. Cosmic Research, 50, 233-248.
http://dx.doi.org/10.1134/S0010952512020062
[24] Mingalev, I.V., Astafieva, N.M., Orlov, K.G., Mingalev, V.S., Mingalev, O.V. and Chechetkin, V.M. (2013) A Simulation Study of the Formation of Large-Scale Cyclonic and Anticyclonic Vortices in the Vicinity of the Intertropical Convergence Zone. ISRN Geophysics, 2013, Article ID: 215362, 12 pages.
http://dx.doi.org/10.1155/2013/215362
[25] Mingalev, V.S. (1993) Transport Equations for the Upper Atmosphere in a Rotating Reference Frame. Geomagnetism and Aeronomy, 33, 106-112. (Russian Issue)
[26] Mingalev, V.S., Mingalev, I.V., Mingalev, O.V., Oparin, A.M. and Orlov, K.G. (2010) Generalization of the Hybrid Monotone Second-Order Finite Difference Scheme for Gas Dynamics Equations to the Case of Unstructured 3D Grid. Computational Mathematics and Mathematical Physics, 50, 877-889.
http://dx.doi.org/10.1134/S0965542510050118
[27] Broccoli, A.J., Dahl, R.A. and Stouffer, R.J. (2006) Response of the ITCZ to Northern Hemisphere Cooling. Geophysical Research Letters, 33, Article ID: L01702.
http://dx.doi.org/10.1029/2005GL024546
[28] Fedorov, A., Barreiro, M., Boccaletti, G., Pacanowski, R. and Philander, S.G. (2007) The Freshening of Surface Waters in High Latitudes: Effects on the Thermohaline and Wind-Driven Circulations. Journal of Physical Oceanography, 37, 896-907. http://dx.doi.org/10.1175/JPO3033.1
[29] Chiang, J.C.H. and Friedman, A.R. (2012) Extratropical Cooling, Interhemispheric Thermal Gradients, and Tropical Climate Change. Annual Review of Earth and Planetary Sciences, 40, 383-412. http://dx.doi.org/10.1146/annurev-earth-042711-105545
[30] Chen, T.C., Tsay, J.D., Yen, M.C. and Cayanan, E.O. (2010) Formation of the Philippine Twin Tropical Cyclones during the 2008 Summer Monsoon Onset. Weather and Forecasting, 25, 1317-1341. http://dx.doi.org/10.1175/2010WAF2222395.1