[1] Krysa, J., Keppert, M., Waldner, G. and Jirkovsky, J. (2005) Immobilized Particulate TiO2 Photocatalysts for Degradation of Organic Pollutants: Effect of Layer Thickness. Electrochimica Acta, 50, 5255-5260.
http://dx.doi.org/10.1016/j.electacta.2005.01.054
[2] Usui, H., Miyamoto, O., Nomiyama, T., Horie, Y. and Miyazaki, T. (2005) Photo-Rechargeability of TiO2 Film Electrodes Prepared by Pulsed Laser Deposition. Solar Energy Materials and Solar Cells, 86, 123.
http://dx.doi.org/10.1016/j.solmat.2004.06.006
[3] Irmak, S., Kusvuran, E. and Erbatur, O. (2004) Degradation of 4-Chloro-2-Methylphenol in Aqueous Solution by UV Irradiation in the Presence of Titanium Dioxide. Applied Catalysis B: Environmental, 54, 85.
http://dx.doi.org/10.1016/j.apcatb.2004.06.003
[4] Vinodgopal, K., Hotchandani, S. and Kamat, P.V. (1993) Electrochemically Assisted Photocatalysis: Titania Particulate Film Electrodes for Photocatalytic Degradation of 4-Chlorophenol. Journal of Physical Chemistry, 97, 9040.
http://dx.doi.org/10.1021/j100137a033
[5] Osugi, M.E., Umbuzeiro, G.A., Anderson, M.A. and Zanoni, M.V.B. (2005) Degradation of Metallophtalocyanine Dye by Combined Processes of Electrochemistry and Photoelectrochemistry. Electrochimica Acta, 50, 5261.
http://dx.doi.org/10.1016/j.electacta.2005.01.058
[6] Leng, W.H., Zhang, Z. and Zhang, J.Q. (2003) Photoelectrocatalytic Degradation of Aniline over Rutile TiO2/Ti Electrode Thermally Formed at 600°C. Journal of Molecular Catalysis A: Chemical, 206, 239.
http://dx.doi.org/10.1016/S1381-1169(03)00373-X
[7] Ma, Y. and Yao, J.N. (1999) Comparison of Photodegradative Rate of Rhodamine B Assisted by Two Kinds of TiO2 Films. Chemosphere, 38, 2407.
http://dx.doi.org/10.1016/S0045-6535(98)00434-2
[8] Wu, J.-M. and Zhang, T.-W. (2004) Photodegradation of Rhodamine B in Water Assisted by Titania Films Prepared through a Novel Procedure. Journal of Photochemistry and Photobiology A: Chemistry, 162, 171.
http://dx.doi.org/10.1016/S1010-6030(03)00345-9
[9] Ishikawa, Y. and Matsumoto, Y. (2001) Electrodeposition of TiO2 Photocatalyst into Nano-Pores of Hard Alumite. Electrochimica Acta, 46, 2819.
http://dx.doi.org/10.1016/S0013-4686(01)00490-X
[10] Kim, D.H. and Anderson, M.A. (1994) Photoelectrocatalytic Degradation of Formic Acid Using a Porous Titanium Dioxide Thin-Film Electrode. Environmental Science & Technology, 28, 479.
http://dx.doi.org/10.1021/es00052a021
[11] Konstantinou, I.K. and Albanis, T.A. (2004) TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations. Applied Catalysis B: Environmental, 49, 1-14.
http://dx.doi.org/10.1016/j.apcatb.2003.11.010
[12] Palombaria, R., Ranchellaa, M., Rola, C. and Sebastiani, G.V. (2002) Oxidative Photoelectrochemical Technology with Ti/TiO2 Anodes. Solar Energy Materials and Solar Cells, 71, 359-368.
http://dx.doi.org/10.1016/S0927-0248(01)00093-9
[13] Christensen, P.A., Curtis, T.P., Egerton, T.A., Kosa, S.A.M. and Tinlin, J.R. (2003) Photoelectrocatalytic and Photocatalytic Disinfection of E. coli Suspensions by Titanium Dioxide. Applied Catalysis B: Environmental, 41, 371-386.
http://dx.doi.org/10.1016/S0926-3373(02)00172-8
[14] Li, X.Z., Li, F.B., Fan, C.M. and Sun, Y.P. (2002) Photoelectrocatalytic Degradation of Humic Acid in Aqueous Solution Using a Ti/TiO2 Mesh Photoelectrode. Water Research, 36, 2215-2224.
http://dx.doi.org/10.1016/S0043-1354(01)00440-7
[15] Jiang, D., Zhao, H., Zhang, S. and John, R. (2004) Kinetic Study of Photocatalytic Oxidation of Adsorbed Carboxylic Acids at TiO2 Porous Films by Photoelectrolysis. Journal of Catalysis, 223, 212-220.
http://dx.doi.org/10.1016/j.jcat.2004.01.030
[16] Guo, Y., Zhao, J., Zhang, H., Yang, S., Qi, J., Wang, Z. and Xu, H. (2005) Use of Rice Husk-Based Porous Carbon for Adsorption of Rhodamine B from Aqueous Solutions. Dyes and Pigments, 66, 123-128.
http://dx.doi.org/10.1016/j.dyepig.2004.09.014
[17] Chen, J., Liu, M., Zhang, L., Zhang, J. and Jin, L. (2003) Application of Nano TiO2 towards Polluted Water Treatment Combined with Electro-Photochemical Method. Water Research, 37, 3815-3820.
http://dx.doi.org/10.1016/S0043-1354(03)00332-4
[18] Butterfield, I.M., Christensen, P.A., Curtis, T.P. and Gunlazuardi, J. (1997) Water Disinfection Using an Immobilised Titanium Dioxide Film in a Photochemical Reactor with Electric Field Enhancement. Water Research, 31, 675-677.
http://dx.doi.org/10.1016/S0043-1354(96)00391-0
[19] Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopoulos, N. and Gratzel, M. (1993) Conversion of Light to Electricity by Cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes. Journal of the American Chemical Society, 115, 6382-6390.
http://dx.doi.org/10.1021/ja00067a063
[20] Xu, Q. and Anderson, M.A. (1991) Synthesis of Porosity Controlled Ceramic Membranes. Journal of Materials Research, 6, 1073-1081.
http://dx.doi.org/10.1557/JMR.1991.1073
[21] Trapalis, C.C., Karakassides, M.A., Kordas, G. and Aslanoglou, X. (1995) Study of a Multilayer Wavelength-Selective Reflector Prepared by the Sol-Gel Process. Materials Letters, 25, 265-269.
http://dx.doi.org/10.1016/0167-577X(95)00183-2
[22] Dekany, I., Turi, L. and Kiraly, Z. (1999) CdS, TiO2 and Pd° Nanoparticles Growing in the Interlamellar Space of Montmorillonite in Binary Liquids. Applied Clay Science, 15, 221-239.
http://dx.doi.org/10.1016/S0169-1317(99)00016-2
[23] Kim, D.J., Oh, S.H. and Kim, E.J. (2002) Influence of Calcination Temperature on Structural and Optical Properties of TiO2 Thin Films Prepared by Sol-Gel Dip Coating. Materials Letters, 57, 355-360.
http://dx.doi.org/10.1016/S0167-577X(02)00790-5
[24] Mogyorosi, K., Dekany, I. and Fendler, J.H. (2003) Preparation and Characterization of Clay Mineral Intercalated Titanium Dioxide Nanoparticles. Langmuir, 19, 2938-2946.
http://dx.doi.org/10.1021/la025969a
[25] Li, J., Li, L., Zheng, L., Xian, Y. and Jin, L. (2006) Determination of Chemical Oxygen Demand Values by a Photocatalytic Oxidation Method Using Nano-TiO2 Film on Quartz. Talanta, 68, 765-770.
http://dx.doi.org/10.1016/j.talanta.2005.06.012
[26] Golego, N., Studenikin, S.A. and Cocivera, M. (1999) Spray Pyrolysis Preparation of Porous Polycrystalline Thin Films of Titanium Dioxide Containing Li and Nb. Journal of Materials Research, 14, 698-707.
http://dx.doi.org/10.1557/JMR.1999.0095
[27] Lee, C.E., Atkins, R.A. and Taylor, H.F. (1987) Reflectively Tapped Optical Fibre Transversal Filters. Electronics Letters, 23, 596-598.
http://dx.doi.org/10.1049/el:19870428
[28] Qu, P., Zhao, J.C., Shen, T. and Hidaka, H. (1998) TiO2-Assisted Photodegradation of Dyes: A Study of Two 2 Competitive Primary Processes in the Degradation of RB in an Aqueous TiO2 Colloidal Solution. Journal of Molecular Catalysis A: Chemical, 129, 257-268.
http://dx.doi.org/10.1016/S1381-1169(97)00185-4
[29] Papp, J., Soled, S., Dwight, K. and Wold, A. (1994) Surface Acidity and Photocatalytic Activity of TiO2, WO3/TiO2, and MoO3/TiO2 Photocatalysts. Chemistry of Materials, 6, 496-500.
http://dx.doi.org/10.1021/cm00040a026
[30] Liao, D.L., Badour, C.A. and Liao, B.Q. (2008) Preparation of Nanosized TiO2/ZnO Composite Catalyst and Its Photocatalytic Activity for Degradation of Methyl Orange. Journal of Photochemistry and Photobiology A: Chemistry, 194, 11-19.
http://dx.doi.org/10.1016/j.jphotochem.2007.07.008
[31] Kansal, S.K., Singh, M. and Sud, D. (2008) Studies on TiO2/ZnO Photocatalysed Degradation of Lignin. Journal of Hazardous Materials, 153, 412-417.
http://dx.doi.org/10.1016/j.jhazmat.2007.08.091
[32] Jiang, Y., Sun, Y., Liu, H., Zhu, F. and Yin, H. (2008) Solar Photocatalytic Decolorization of C.I. Basic Blue 41 in an Aqueous Suspension of TiO2-ZnO. Dyes Pigments, 78, 77-83.
http://dx.doi.org/10.1016/j.dyepig.2007.10.009
[33] Tada, H., Hattori, A., Tokihisa, Y., Imai, K., Tohge, N. and Ito, S. (2000) A Patterned-TiO2/SnO2 Bilayer Type Photocatalyst. The Journal of Physical Chemistry B, 104, 4585-4587.
http://dx.doi.org/10.1021/jp000049r
[34] Liu, Z., Sun, D.D., Guo, P. and Leckie, J.O. (2007) An Efficient Bicomponent TiO2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method. Nano Letters, 7, 1081-1085.
http://dx.doi.org/10.1021/nl061898e
[35] Kavan, L., Stoto, T., Gratzel, M., Fitzmaurice, D. and Shklover, V. (1993) Quantum Size Effects in Nanocrystalline Semiconducting Titania Layers Prepared by Anodic Oxidative Hydrolysis of Titanium Trichloride. Journal of Physical Chemistry, 97, 9493-9498.
http://dx.doi.org/10.1021/j100139a038
[36] Lin, C.F., Wu, C.H. and Onn, Z.N. (2008) Degradation of 4-Chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems. Journal of Hazardous Materials, 154, 1033-1039.
http://dx.doi.org/10.1016/j.jhazmat.2007.11.010
[37] Sreetawang, T., Suzuki, Y. and Yoshikawa, S. (2005) Photocatalytic Evolution of Hydrogen over Mesoporous TiO2 Supported NiO Photocatalyst Prepared by Single-Step Sol-Gel Process with Surfactant Template. International Journal of Hydrogen Energy, 30, 1053-1062.
http://dx.doi.org/10.1016/j.ijhydene.2004.09.007
[38] Inoue, T., Akira, F., Satoshi, K. and Kenichi, H. (1979) Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders. Nature, 277, 637-638.
http://dx.doi.org/10.1038/277637a0
[39] Zhou, H., Qu, Y., Zeid, T. and Duan, X. (2012) Towards Highly Efficient Photocatalysts Using Semiconductor Nanoarchitectures. Energy & Environmental Science, 5, 6732-6743.
http://dx.doi.org/10.1039/c2ee03447f
[40] Wahyuningsih, S., Purnawan, C., Saraswati, T.E., Kartikasari, P.A. and Praistia, N. (2014) Visible Light Photoelectrocatalytic Degradation of Rhodamine B Using a Dye-Sensitised TiO2 Electrode. Chemical Papers, 68, 1248-1256.
http://dx.doi.org/10.2478/s11696-013-0476-8