Back
 AJAC  Vol.5 No.17 , December 2014
Molybdenum Phosphide Flakes Catalyze Hydrogen Generation in Acidic and Basic Solutions
Abstract: Molybdenum phosphide (MoP) flakes were synthesized by the reduction of hexaammonium heptamolybdate tetrahydrate and ammonium dihydrogen phosphate. The flakes are porous and constructed by MoP nanoparticles with ca. 100 nm diameters. The lateral size of flakes ranges from less than 1 μm to larger than 5 μm, and the thickness of MoP fakes is ca. 200 nm. The mixture of MoP flakes and carbon black exhibits effective catalytic activity in the hydrogen evolution reaction. The optimal overpotential required for 20 mA·cm﹣2 current density is 155 mV in acidic solution and 184 mV in basic solution. The mixture can work stably in long-term hydrogen generation in both acidic and basic solution. The faradaic yield of mixture in hydrogen evolution reaction is nearly 100% in both acidic and basic solution. The Mo and P species in MoP flakes are found to have small positive and negative charge, respectively. The catalytic activity of MoP flakes is likely to be correlated with this charged nature.
Cite this paper: Chen, Z. , Lv, C. , Chen, Z. , Jin, L. , Wang, J. and Huang, Z. (2014) Molybdenum Phosphide Flakes Catalyze Hydrogen Generation in Acidic and Basic Solutions. American Journal of Analytical Chemistry, 5, 1200-1213. doi: 10.4236/ajac.2014.517127.
References

[1]   Lewis, N.S. and Nocera, D.G. (2006) Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proceedings of the National Academy of Sciences, 103, 15729-15735.
http://dx.doi.org/10.1073/pnas.0603395103

[2]   Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S. and Nocera, D.G. (2010) Solar Energy Supply and Storage for the legacy and Nonlegacy Worlds. Chemical Reviews, 110, 6474-6502.
http://dx.doi.org/10.1021/cr100246c

[3]   Jaramillo, T.F., Jorgensen, K.P., Nielsen, J.H., Horch, S. and Chorkendorff, I. (2007) Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science, 317, 100-102.
http://dx.doi.org/10.1126/science.1141483

[4]   Laursen, A.B., Kegnaes, S., Dahl, S. and Chorkendorff, I. (2012) Molybdenum Sulfides-Efficient and Viable Materials for Electro- and Photoelectrocatalytic Hydrogen Evolution. Energy & Environmental Science, 5, 5577-5591.
http://dx.doi.org/10.1039/c2ee02618j

[5]   Hinnermann, B., Moses, P.G., Bonde, J., Jorgensen, K.P., Nielsen, J.H., Horch, S., Chorkendorff, I. and Norskov, J.K. (2005) Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. Journal of the American Chemical Society, 127, 5308-5309.
http://dx.doi.org/10.1021/ja0504690

[6]   Merki, D. and Hu, X. L. (2011) Recent Developments of Molybdenum and Tungsten Sulfides as Hydrogen Evolution Catalysts. Energy & Environmental Science, 4, 3878-3888.
http://dx.doi.org/10.1039/c1ee01970h

[7]   Merki, D., Fierro, S., Vrubel, H. and Hu, X.L. (2011) Amorphous Molybdenum Sulfide Films as Catalysts for Electrochemical Hydrogen Production in Water. Chemical Science, 2, 1262-1267.
http://dx.doi.org/10.1039/c1sc00117e

[8]   Wu, Z.Z., Fang, B.Z., Bonakdarpour, A., Sun, A.K., Wilkinson, D.P. and Wang, D.Z. (2012) WS2 Nanosheets as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. Applied Catalysis B: Environmental, 125, 59-66.
http://dx.doi.org/10.1016/j.apcatb.2012.05.013

[9]   Voiry, D., Yamaguchi, H., Li, J.W., Silva, R., Alves, D.C.B., Fujita, T., Chen, M.W., Asefa, T., Shenoy, V.B., Eda, G. and Chhowalla, M. (2013) Enhanced Catalytic Activity in Strained Chemically Exfoliated WS2 Nanosheets for Hydrogen Evolution. Nature Materials, 12, 850-855.
http://dx.doi.org/10.1038/nmat3700

[10]   Ivanovskaya, A., Singh, N., Liu, R.F., Kreutzer, H., Baltrusaitis, J., Nguyen, T.V., Metiu, H. and McFarland, E. (2013) Transition Metal Sulfide Hydrogen Evolution Catalysts for Hydrobromic Acid Electrolysis. Langmuir, 29, 480-492.
http://dx.doi.org/10.1021/la3032489

[11]   Kong, D.S., Cha, J.J., Wang, H.T., Lee, H.R. and Cui, Y. (2013) First-Row Transition Metal Dichalcogenide Catalysts for Hydrogen Evolution Reaction. Energy & Environmental Science, 6, 3553-3558.
http://dx.doi.org/10.1039/c3ee42413h

[12]   Vrubel, H. and Hu, X.L. (2012) Molybdenum Boride and Carbide Catalyze Hydrogen Evolution in Both Acidic and Basic Solutions. Angewandte Chemie International Edition, 51, 12703-12706.

[13]   Chen, W.F., Iyer, S., Iyer, S., Sasaki, K., Wang, C.H., Zhu, Y.M., Muckerman, J.T. and Fujita, E. (2013) Biomass-Derived Electrocatalytic Composites for Hydrogen Evolution. Energy & Environmental Science, 6, 1818-1826.
http://dx.doi.org/10.1039/c3ee40596f

[14]   Chen, W.F., Wang, C.H., Sasaki, K., Marinkovic, N., Xu, W., Muckerman, J.T., Zhu, Y. and Adzic, R.R. (2013) Highly Active and Durable Nanostructured Molybdenum Carbide Electrocatalysts for Hydrogen Production. Energy & Environmental Science, 6, 943-951.
http://dx.doi.org/10.1039/c2ee23891h

[15]   Harnisch, F., Sievers, G. and Schroder, U. (2009) Tungsten Carbide as Electrocatalyst for the Hydrogen Evolution Reaction in pH Neutral Electrolyte Solutions. Energy & Environmental Science, 89, 455-458.
http://dx.doi.org/10.1016/j.apcatb.2009.01.003

[16]   Zhao, Y., Kamiya, K., Hashimoto, K. and Nakanishi, S. (2013) Hydrogen Evolution by Tungsten Carbonitride Nanoelectrocatalysts Synthesized by the Formation of a Tungsten Acid/Polymer Hybrid In Situ. Angewandte Chemie International Edition, 52, 13638-13641.
http://dx.doi.org/10.1002/anie.201307527

[17]   Cao, B.F., Veith, C.M., Neuefeind, J.C., Adzic, R.R. and Khalifah, P.G. (2013) Mixed Close Packed Cobalt Molybdenum Nitrides as Non-Noble Metal Electrocatalysts for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 135, 19186-19192.
http://dx.doi.org/10.1021/ja4081056

[18]   Tran, P.D., Chiam, S.Y., Boix, P.P., Ren, Y., Pramana, S.S., Fize, J., Artero, V. and Barber, J. (2013) Novel Cobalt/ Nickel-Tungsten-Sulfide Catalysts for Electrocatalytic Hydrogen Generation from Water. Energy & Environmental Science, 6, 2452-2459.
http://dx.doi.org/10.1039/c3ee40600h

[19]   Liu, P. and Rodriguez, J.A. (2005) Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P(001) Surface: The Importance of Ensemble Effect. Journal of the American Chemical Society, 127, 14871-14878.
http://dx.doi.org/10.1021/ja0540019

[20]   Popczun, E.J., McKone, J.R., Read, C.G., Biacchi, A.J., Wiltrout, A.M., Lewis, N.S. and Schaak, R.E. (2013) Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 135, 9267-9270.
http://dx.doi.org/10.1021/ja403440e

[21]   Huang, Z.P., Chen, Z.B., Chen, Z.Z., Lv, C.C., Meng, H. and Zhang, C. (2014) Ni12P5 Nanoparticles as an Efficient Catalyst for Hydrogen Generation via Electrolysis and Photoelectrolysis. ACS Nano, 8, 8121-8129.
http://dx.doi.org/10.1021/nn5022204

[22]   Liu, Q., Tian, J.Q., Cui, W., Jiang, P., Cheng, N.Y., Asiri, A.M. and Sun, X.P. (2014) Carbon Nanotubes Decorated with CoP Nanocrystals: A Highly Active Non-Noble-Metal Nanohybrid Electrocatalyst for Hydrogen Evolution. Angewandte Chemie International Edition, 53, 6710-6714.

[23]   Popczun, E.J., Read, C.G., Roske, C.W., Lewis, N.S. and Schaak, R.E. (2014) Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles. Angewandte Chemie International Edition, 53, 5427-5430.

[24]   Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q.X., Santori, E.A. and Lewis, N.S. (2010) Solar Water Splitting Cells. Chemical Reviews, 110, 6446-6473.
http://dx.doi.org/10.1021/cr1002326

[25]   Gao, M.R., Lin, Z.Y., Zhuang, T.T., Jiang, J., Xu, Y.F., Zheng, Y.R. and Yu, S.H. (2012) Mixed-Solution Synthesis of Sea Urchin-Like NiSe Nanofiber Assemblies as Economical Pt-Free Catalysts for Electrochemical H2 Production. Journal of Materials Chemistry, 22, 13662-13668.
http://dx.doi.org/10.1039/c2jm31916k

[26]   Phillips, D.C., Sawhill, S.J., Self, R. and Bussell, M.E. (2002) Synthesis, Characterization, and Hydrodesulfurization Properties of Silica-Supported Molybdenum Mhosphide Catalysts. Journal of Catalysis, 207, 266-273.
http://dx.doi.org/10.1006/jcat.2002.3524

[27]   Abu, I.I. and Smith, K.J. (2006) The Effect of Cobalt Addition to Bulk MoP and Ni2P Catalysts for the Hydrodesulfurization of 4,6-Dimethyldibenzothiophene. Journal of Catalysis, 241, 356-366.
http://dx.doi.org/10.1016/j.jcat.2006.05.010

[28]   Powell, C.J. (2012) Recommended Auger Parameters for 42 Elemental Solids. Journal of Electron Spectroscopy and Related Phenomena, 185, 1-3.
http://dx.doi.org/10.1016/j.elspec.2011.12.001

[29]   Nefedov, V.I., Salyn, Y.V., Domashevskaya, E.P., Ugai, Y.A. and Terekhov, V.A.A. (1975) Study by XPS and XRS of the Participation in Chemical Bonding of the 3d Electrons of Copper, Zinc and Gallium. Journal of Electron Spectroscopy and Related Phenomena, 6, 231-238.
http://dx.doi.org/10.1016/0368-2048(75)80018-1

[30]   Tian, J.Q., Liu,Q., Asiri, A.M. and Sun, X.P. (2014) Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0-14. Journal of the American Chemical Society, 136, 7587-7590.
http://dx.doi.org/10.1021/ja503372r

[31]   McKone, J.R., Sadtler, B.F., Werlang, C.A., Lewis, N.S. and Gray, H.B. (2013) Ni-Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution. ACS Catalysis, 3, 166-169.
http://dx.doi.org/10.1021/cs300691m

[32]   Lin, T.W., Liu, C.J. and Lin, J.Y. (2013) Facile Synthesis of MoS3/Carbon Nanotube Nanocomposite with High Catalytic Activity toward Hydrogen Evolution Reaction. Applied Catalysis B: Environmental, 134-135, 75-82.
http://dx.doi.org/10.1016/j.apcatb.2013.01.004

[33]   Chen, Z., Cummins, D., Reinecke, B.N., Clark, E., Sunkara, M.K. and Jaramillo, T.F. (2011) Core-Shell MoO3-MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials. Nano Letters, 11, 4168-4175.
http://dx.doi.org/10.1021/nl2020476

[34]   Xie, J., Zhang, H., Li, S., Wang, R., Sun, X., Zhou, M., Zhou, J., Lou, X.W. and Xie, Y. (2013) Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Materials, 25, 5807-5813.
http://dx.doi.org/10.1002/adma.201302685

[35]   Wang, T.Y., Liu, L., Zhu, Z.W., Papakonstantinou, P., Hu, J.B. and Li, M. (2013) Enhanced Electrocatalytic Activity for Hydrogen Evolution Reaction from Self-Assembled Mono-dispersed Molybdenum Sulfide Nanoparticles on an Au Electrode. Energy & Environmental Science, 6, 625-633.
http://dx.doi.org/10.1039/c2ee23513g

[36]   Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G. and Dai, H. (2011) MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 133, 7296-7299.
http://dx.doi.org/10.1021/ja201269b

[37]   Liao, L., Zhu, J., Bian, X.J., Zhu, L.N., Scanlon, M.D., Girault, H.H. and Liu, B.H. (2013) MoS2 Formed on Mesoporous Graphene as a Highly Active Catalyst for Hydrogen Evolution. Advanced Functional Materials, 23, 5326-5333.
http://dx.doi.org/10.1002/adfm.201300318

[38]   Yan, Y., Ge, X., Liu, Z., Wang, J.Y., Lee, J.M. and Wang, X. (2013) Facile Synthesis of Low Crystalline MoS2 Nanosheet-Coated CNTs for Enhanced Hydrogen Evolution Reaction. Nanoscale, 5, 7768-7771.
http://dx.doi.org/10.1039/c3nr02994h

[39]   Tran, P.D., Nguyen, M., Pramana, S.S., Bhattacharjee, A., Chiam, S.Y., Fize, J., Field, M.J., Artero, V., Wong, L.H., Loo, J. and Barber, J. (2012) Copper Molybdenum Sulfide: A New Efficient Electrocatalyst for Hydrogen Production from Water. Energy & Environmental Science, 5, 8912-8916.
http://dx.doi.org/10.1039/c2ee22611a

[40]   Yang, J., Voiry, D., Ahn, S.J., Kang, D., Kim, A.Y., Chhowalla, M. and Shin, H.S. (2013) Two-Dimensional Hybrid Nanosheets of Tungsten Disulfide and Reduced Graphene Oxide as Catalysts for Enhanced Hydrogen Evolution. Angewandte Chemie International Edition, 52, 13751-13754.
http://dx.doi.org/10.1002/anie.201307475

[41]   Sun, Y., Liu, C., Grauer, D.C., Yano, J., Long, J.R., Yang, P. and Chang, C.J. (2013) Electrodeposited Cobalt-Sulfide Catalyst for Electrochemical and Photoelectrochemical Hydrogen Generation from Water. Journal of the American Chemical Society, 135, 17699-17702.
http://dx.doi.org/10.1021/ja4094764

 
 
Top