[1] Kordesch, K.V. (1977) The Electric Automobile. In: Kordesch, K.V., Ed., Batteries. Vol. 2: Lead-Acid Batteries and Electric Vehicles, Marcel Dekker, Inc., New York, 201-403.
[2] Bode, H. (1977) Lead-Acid Batteries. John Wiley & Sons, New York.
[3] Charlesworth, J.M. (1996) Determination of the State-of-Charge of a Lead-Acid Battery Using Impedance of the Quartz Crystal Oscillatory. Electrochimica Acta, 41, 1721-1726. http://dx.doi.org/10.1016/0013-4686(95)00480-7
[4] Makino, D., Naito, M., Fujimoto, H., Tadakuma, T., Nitta, H., Takahashi, K., Tsubota, M., Iwanami, Y., Kudo, H. and Fujita, Y. (1994) A State-of-Charge Indicator for Valve-Regulated Lead-Acid (VRLA) Batteries. GS News Technical Report, 53, 10-16.
[5] McNicol, B.D. and Rand, D.A.J., Eds. (1984) Power Sources for Electric Vehicles. Elsevier, The Netherlands.
[6] Weininger, J.L. and Briant, J.L. (1982) State-of-Charge Indicator for Lead-Acid Batteries. Journal of the Electrochemical Society, 129, 2409-2412. http://dx.doi.org/10.1149/1.2123557
[7] Weiss, J.D. (1999) Optical State-of-Charge Monitor for Batteries. US Patent US5949219, United States Department of Energy, Washington DC, 19 pp.
[8] Cadirci, Y. and Ozkazanc, Y. (2004) Microcontroller-Based on-Line State-of-Charge Estimator for Sealed Lead-Acid Batteries. Journal of Power Sources, 129, 330-342.
http://dx.doi.org/10.1016/j.jpowsour.2003.11.008
[9] Cortazar, O.D. and Feliu, V. (2006) A Simple and Robust Fiber Optics System for Measuring the Lead-Acid Battery State-of-Charge. Journal of Power Sources, 159, 728-733.
http://dx.doi.org/10.1016/j.jpowsour.2005.11.052
[10] Gonzalez, I., Ramiro, A., Calderon, M., Calderon, A.J. and Gonzalez, J.F. (2012) Estimation of the State-of-Charge of Gel Lead-Acid Batteries and Application to the Control of a Stand-Alone Wind-Solar Test-Bed with Hydrogen Support. International Journal of Hydrogen Energy, 37, 11090-11103. http://dx.doi.org/10.1016/j.ijhydene.2012.05.001
[11] Han, J., Kim, D. and Sunwoo, M. (2009) State-of-Charge Estimation of Lead-Acid Batteries Using an Adaptive Extended Kalman Filter. Journal of Power Sources, 188, 606-612.
http://dx.doi.org/10.1016/j.jpowsour.2008.11.143
[12] Hill, I.R. and Andrukaitis, E.E. (2001) Non-Intrusive Measurement of the State-of-Charge of Lead-Acid Batteries Using Wire-Wound Coils. Journal of Power Sources, 103, 98-112.
http://dx.doi.org/10.1016/S0378-7753(01)00852-7
[13] Li, B., Wang, Y., Wu, L. and Chen, Z. (2009) A New Method of Fuzzy SOC Estimation for Dynamic Battery Using Terminal Voltage. Journal of Hunan University, 36, 47-50.
[14] Tinnemeyer, J.A. (2010) Diamagnetic Measurements in Lead Acid Batteries to Estimate State of Charge. Proceedings of the Power Sources Conference, 508-511.
[15] Vasebi, A., Bathaee, S.M.T. and Partovibakhsh, M. (2007) Predicting State of Charge of Lead-Acid Batteries for Hybrid Electric Vehicles by Extended Kalman Filter. Energy Conversion and Management, 49, 75-82.
http://dx.doi.org/10.1016/j.enconman.2007.05.017
[16] Patil, S.S., Labade, V.P., Kulkarni, N.M. and Shaligram, A.D. (2013) Analysis of Refractometric Fiber Optic State-of-Charge (SOC) Monitoring Sensor for Lead Acid Battery. Optik—International Journal for Light and Electron Optics, 124, 5687-5691.
[17] Patil, S.S., Labade, V.P., Kulkarni, N.M. and Shaligram, A.D. (2014) Refractometric Fiber Optic Sensor for in Situ Monitoring the State-of-Charge of a Lead Acid Battery. Journal of Optical Technology, 81, 159-163.
http://dx.doi.org/10.1364/JOT.81.000159
[18] Singh, P., Velletri, V., Ritchie, I.M. and Bailey, S.I. (1990) Behaviour of Ferrocene Modified Electrodes in Sulfuric Acid. In: Wood, L. and Jones, A., Eds., New Developments in Electrode Materials and Their Application, Commonwealth of Australia, Canberra, 57-68.
[19] Murray, R.W. (1984) Chemically Modified Electrodes. In: Bard, A.J., Ed., Electroanalytical Chemistry, Volume 13, 191-368.
[20] Heineman, W.R., Wieck, H.J. and Yacynych, A.M. (1980) Polymer Film Chemically Modified Electrode as a Potentiometric Sensor. Analytical Chemistry, 52, 345-346. http://dx.doi.org/10.1021/ac50052a031
[21] Cheek, G., Wales, C.P. and Nowak, R.J. (1983) pH Response of Platinum and Vitreous Carbon Electrodes Modified by Electropolymerized Films. Analytical Chemistry, 55, 380-381.
http://dx.doi.org/10.1021/ac00253a047
[22] Rubinstein, I. (1984) Voltammetric pH Measurements with Surface-Modified Electrodes and a Voltammetric Internal Reference. Analytical Chemistry, 56, 1135-1137.
http://dx.doi.org/10.1021/ac00271a018
[23] Hickman, J.J., Ofer, D., Laibinis, P.E., Whitesides, G.M. and Wrighton, M.S. (1991) Molecular Self-Assembly of Two-Terminal, Voltammetric Microsensors with Internal References. Science, 252, 688-691.
http://dx.doi.org/10.1126/science.252.5006.688
[24] Albagli, D., Bazan, G.C., Schrock, R.R. and Wrighton, M.S. (1993) Surface Attachment of Well-Defined Redox-Active Polymers and Block Polymers via Terminal Functional Groups. Journal of the American Chemical Society, 115, 7328-7334. http://dx.doi.org/10.1021/ja00069a035
[25] Jordan, R., Ulman, A., Kang, J.F., Rafailovich, M.H. and Sokolov, J. (1999) Surface-Initiated Anionic Polymerization of Styrene by Means of Self-Assembled Monolayers. Journal of the American Chemical Society, 121, 1016-1022.
http://dx.doi.org/10.1021/ja981348l
[26] Funt, B.L. and Gray, D.G. (1970) Primary Processes in Electropolymerization by Cyclic Voltammetry of Phenyl-Substituted Ethylenes. Journal of Electrochemical Society, 117, 1020-1024. http://dx.doi.org/10.1149/1.2407711
[27] Ju, H. and Leech, D. (1997) Electrochemistry of Poly(Vinylferrocene) Formed by Direct Electrochemical Reduction at a Glassy Carbon Electrode. Journal of the Chemical Society, Faraday Transactions, 93, 1371-1375.
http://dx.doi.org/10.1039/a606680a
[28] Etori, H., Kanbara, T. and Yamamoto, T. (1994) New Type of Pi-Conjugated Polymers Constituted of Quinone Units in the Main Chain. Chemistry Letters, 23, 461-464.
http://dx.doi.org/10.1246/cl.1994.461
[29] Lee, T., Singh, P., Baker, M.V. and Issa, T.B. (2008) Polydivinylferrocene Surface Modified Electrode for Measuring State-of-Charge of Lead-Acid Battery. Journal of Power Sources, 182, 639-641.
http://dx.doi.org/10.1016/j.jpowsour.2008.04.034
[30] Issa, T.B., Singh, P. and Baker, M. (1998) Using an 11-Ferrocenyl-1-Undecanethiol Surface-Modified Electrode for Sensing Hydrogen-Ion Concentration in Concentrated Sulfuric Acid Solutions. In: Akmal, N. and Usmani, A.M., Eds., Polymers in Sensors: Theory and Practice, American Chemical Society, Washington DC, 257-263.
http://dx.doi.org/10.1021/bk-1998-0690.ch021
[31] Issa, T.B., Singh, P., Baker, M. and Verma, B.S. (2001) 1,1’-Bis(11-mercaptoundecyl)ferrocene for Potentiometric Sensing of H+ Ion in Sulfuric Acid Media Simulating Lead Acid Battery Electrolyte. Journal of Applied Electrochemistry, 31, 921-924. http://dx.doi.org/10.1023/A:1017569602261