IJAA  Vol.4 No.4 , December 2014
Discovered Solar Positronium
Author(s) Nagendra Nath Mondal1,2
ABSTRACT
I describe a method for the observation of Positronium (Ps) involvement in the solar radiation spectrum. In this method, Rydberg-Ritz’s principle and Planck’s radiation formula are used to acquire information of the atomic transitions of Ps alike Hydrogen and Helium. In order to perform this experiment, an advanced solar spectrum monitor is constructed by utilizing light emitting diodes (LED) of various colors. A detailed study on this method provides qualitative agreement with experimental data, giving insight to the physical process involved in the solar radiation spectrum and confirming the existence of solar Ps.

Cite this paper
Mondal, N. (2014) Discovered Solar Positronium. International Journal of Astronomy and Astrophysics, 4, 620-627. doi: 10.4236/ijaa.2014.44057.
References
[1]   Mondal, N.N. (2014) Study Chromaticity of Solar Spectrum. International Journal of Astronomy and Astrophysics, 4, 510-518. http://dx.doi.org/10.4236/ijaa.2014.43047

[2]   Berko, S. and Pendleton, H.N. (1980) Positronium. Annual Review of Nuclear and Particle Science, 30, 543-581. http://dx.doi.org/10.1146/annurev.ns.30.120180.002551

[3]   Anderson, C.D. (1933) Positrons from Gamma-Rays. Physical Review, 43, 491.
http://dx.doi.org/10.1103/PhysRev.43.1034 http://dx.doi.org/10.1103/PhysRev.43.368
http://dx.doi.org/10.1103/PhysRev.43.491


[4]   Canter, K.F., Mills Jr., A.P. and Berko, S. (1975) Observation of Positronium Lyman-α Radiation. Physical Review Letters, 34, 177. http://dx.doi.org/10.1103/PhysRevLett.34.848.2
http://dx.doi.org/10.1103/PhysRevLett.34.177


[5]   Mondal, N.N., Hirose, T., Hamatsu, R., Kumita, T., Ijima, H., Irako, M. and Omori, T. (1999) Construction of a Time-of-Flight Measurement System to Study the Low Energy Positronium Production. Applied Surface Science, 149, 269-275. http://dx.doi.org/10.1016/S0169-4332(99)00214-7

[6]   Mondal, N.N. (2008) A New Approach to Position Reconstruction in TOFPET. Journal of Medical Physics, 33, 9-13. http://dx.doi.org/10.4103/0971-6203.39418 http://www.jmp.org.in/text.asp?2008/33/1/9/39418

[7]   Mondal, N.N. (2009) Monte Carlo Simulation Studies on Scintillation Detectors and Image Reconstruction of Brain-Phantom Tumors in TOFPET. Journal of Medical Physics, 34, 212-216. http://dx.doi.org/10.4103/0971-6203.56083 http://www.jmp.org.in/text.asp?2009/34/4/212/56083

[8]   Coleman, P.G. (2001) Positron Depth Profiling. Materials Science Forum, 363-365, 420-424. http://dx.doi.org/10.4028/www.scientific.net/MSF.363-365.420

[9]   Krause-Rehberg, R., Borner, F. and Redman, F. (2001) Positron Beam Studies of Defects in Semiconductors. Materials Science Forum, 363-365, 404-408.
http://dx.doi.org/10.4028/www.scientific.net/MSF.363-365.404

[10]   Ganguly, B.N., Mondal, N.N., Nandi, M. and Roesch, F. (2009) Some Physical Aspects of Positron Annihilation Tomography: A Critical Review. Journal of Radioanalytical and Nuclear Chemistry, 279, 685-698. http://dx.doi.org/10.1007/s10967-007-7256-2

[11]   Cassidy, D.B. and Mills Jr., A.P. (2007) The Production of Molecular Positronium. Nature, 416, 345.

[12]   Cassidy, D.B., Hisakado, T.H., Tom, H.W.K. and Mills Jr., A.P. (2011) Photoemission of Positronium from Si. Physical Review Letters, 107, Article ID: 033401.
http://dx.doi.org/10.1103/PhysRevLett.107.033401

[13]   Mondal, N.N. (2002) A Novel Detection System for Laser Cooling of Ortho-Positronium. Nuclear Instruments and Methods in Physics Research Section A, 495, 161-169.
http://dx.doi.org/10.1016/S0168-9002(02)01578-4

[14]   Chu, S. and Mills Jr., A.P. (1982) Excitation of the Positronium 1 S13→2 S13 Two-Photon Transition. Physical Review Letters, 48, 1333-1337. http://dx.doi.org/10.1103/PhysRevLett.48.1333

[15]   Nagashima, Y., Hakodate, T., Miyamoto, A. and Michishio, K. (2008) Efficient Emission of Positronium Negative Ions from Cs Deposited W (100) Surfaces. New Journal of Physics, 10, Article ID: 123029. http://dx.doi.org/10.1088/1367-2630/10/12/123029

[16]   Cassidy, D.B., Hisakado, T.H., Tom, H.W.K. and Mills Jr., A.P. (2012) Optical Spectroscopy of Molecular Positronium. Physical Review Letters, 108, Article ID: 133402.
http://dx.doi.org/10.1103/PhysRevLett.108.133402

[17]   Cassidy D.B., Hisakado, T.H., Tom, H.W.K. and Mills Jr., A.P. (2012) Efficient Production of Rydberg Positronium. Physical Review Letters, 108, Article ID: 043401.
http://dx.doi.org/10.1103/PhysRevLett.108.043401

[18]   Chupp, E.L., Forrest, D.J., Higbie, P.R., Suri, A.N., Tsai, C. and Dunphy, P.P. (1973) Solar Gamma Ray Lines Observed during the Solar Activity of August 2 to August 11, 1972. Nature, 241, 333-335. http://dx.doi.org/10.1038/241333a0

[19]   Leventhal, M., MacVallum, C.J. and Stang, P.D. (1978) Detection of 511 keV Positron Annihilation Radiation from the Galactic Center Direction. Astrophysical Journal, 225, L11-L14.

[20]   Gould, R.J., (1989) Direct Positron Annihilation and Positronium Formation in Thermal Plasmas. Astrophysical Journal, 344, 232. http://dx.doi.org/10.1086/167792

[21]   Canter, K.F., Mills Jr., A.P. and Berko, S. (1974) Efficient Positronium Formation by Slow Positrons Incident on Solid Targets. Physical Review Letters, 33, 7-10.
http://dx.doi.org/10.1103/PhysRevLett.33.7

[22]   Perkins, D.H. (1986) Introduction to High Energy Physics. Addison-Wesley Publishing Company, Inc., Tokyo.

[23]   Puxley, P.J. and Skinner, C.K. (1996) A Search for Infrared Positronium Line Emission from the Great Annihilator near the Galactic Centre. Proceedings of the Galactic Center, 4th ESO/CTIO Workshop, La Serena, 10-15 March 1996, 439.

[24]   Ellis, S.C. and Hawthorn, B. (2009) The Search for Celestial Positronium via the Recombination Spectrum. The Astrophysical Journal, 707, 457-471. http://dx.doi.org/10.1088/0004-637X/707/1/457

[25]   Rohlf, J.W. (1994) Modern Physics from α to Zo. John Wiley & Sons Inc., Hoboken.

[26]   Mims III, F.M. (1992) Sun Photometer with Light-Emitting Diodes as Spectrally Selective Detectors. Applied Optics, 31, 6965-6967. http://dx.doi.org/10.1364/AO.31.006965

 
 
Top