De Broglie’s Velocity of Transition between Quantum Levels and the Quantum of the Magnetic Spin Moment Obtained from the Uncertainty Principle for Energy and Time

ABSTRACT

The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state*n* to its neighbouring
state as a function of *n*. The paper
shows, for the case of the harmonic oscillator taken as an example, that the De
Broglie’s dependence of the transition velocity on *n* is equal to the *n*-dependence
of that velocity calculated with the aid of the uncertainty principle for the
energy and time. In the next step the minimal distance parameter provided by
the uncertainty principle is applied in calculating the magnetic moment of the
electron which effectuates its orbital motion in the magnetic field. This
application gives readily the electron spin magnetic moment as well as the
quantum of the magnetic flux known in superconductors as its result.

The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state

KEYWORDS

Velocity of the Electron Transitions between Quantum Levels, De Broglie Wave Packets, Magnetic Moment of the Electron Spin, Quantum of the Magnetic Flux, The Uncertainty Principle for Energy and Time

Velocity of the Electron Transitions between Quantum Levels, De Broglie Wave Packets, Magnetic Moment of the Electron Spin, Quantum of the Magnetic Flux, The Uncertainty Principle for Energy and Time

Cite this paper

Olszewski, S. (2014) De Broglie’s Velocity of Transition between Quantum Levels and the Quantum of the Magnetic Spin Moment Obtained from the Uncertainty Principle for Energy and Time.*Journal of Modern Physics*, **5**, 2022-2029. doi: 10.4236/jmp.2014.518198.

Olszewski, S. (2014) De Broglie’s Velocity of Transition between Quantum Levels and the Quantum of the Magnetic Spin Moment Obtained from the Uncertainty Principle for Energy and Time.

References

[1] De Broglie, L. (1923) Comptes Rendus, 177, 507-510.

[2] De Broglie, L. (1923) Comptes Rendus, 177, 548-550.

[3] De Broglie, L. (1923) Comptes Rendus, 177, 630-632.

[4] De Broglie, L. (1924) Philosophical Magazine, 47, 446-458.

http://dx.doi.org/10.1080/14786442408634378

[5] Jammer, M. (1966) The Conceptual Development of Quantum Mechanics. McGraw-Hill, New York.

[6] Schiff, L.I. (1968) Quantum Mechanics. 3rd Edition, McGraw-Hill, New York.

[7] Olszewski, S. (2011) Journal of Modern Physics, 2, 1305-1309.

http://dx.doi.org/10.4236/jmp.2011.211161

[8] Olszewski, S. (2012) Journal of Modern Physics, 3, 217-220.

http://dx.doi.org/10.4236/jmp.2012.33030

[9] Olszewski, S. (2012) Quantum Matter, 1, 127-133.

http://dx.doi.org/10.1166/qm.2012.1010

[10] Olszewski, S. (2014) Journal of Modern Physics, 5, 1264-1271.

http://dx.doi.org/10.4236/jmp.2014.514127

[11] Olszewski, S. (2015) Quantum Matter, in Press.

[12] Ruark, A.E. (1928) Proceedings of the National Academy of Sciences of the United States of America, 14, 322-328.

http://dx.doi.org/10.1073/pnas.14.4.322

[13] Flint, H.E. (1928) Proceedings of the Royal Society A, London, 117, 630-637. http://dx.doi.org/10.1098/rspa.1928.0025

[14] Flint, H.E. and Richardson, O.W. (1928) Proceedings of the Royal Society A, London, 117, 637-649.

http://dx.doi.org/10.1098/rspa.1928.0026

[15] Landau, L.D. and Lifshitz, E.M. (1969) Mechanics, Electrodynamics. Izd. Nauka, Moscow.

[16] Landau, L.D. and Lifshitz, E.M. (1972) Quantum Mechanics. Izd. Nauka, Moscow.

[17] Bethe, H.A. (1947) Elementary Nuclear Theory. Wiley, New York.

[18] Sommerfeld, A. (1931) Atombau und Spektrallinien. Vol. 1, 5th Edition, Vieweg, Braunschweig.

[19] Kittel, C. (1987) Quantum Theory of Solids. 2nd Edition, Wiley, New York.

[1] De Broglie, L. (1923) Comptes Rendus, 177, 507-510.

[2] De Broglie, L. (1923) Comptes Rendus, 177, 548-550.

[3] De Broglie, L. (1923) Comptes Rendus, 177, 630-632.

[4] De Broglie, L. (1924) Philosophical Magazine, 47, 446-458.

http://dx.doi.org/10.1080/14786442408634378

[5] Jammer, M. (1966) The Conceptual Development of Quantum Mechanics. McGraw-Hill, New York.

[6] Schiff, L.I. (1968) Quantum Mechanics. 3rd Edition, McGraw-Hill, New York.

[7] Olszewski, S. (2011) Journal of Modern Physics, 2, 1305-1309.

http://dx.doi.org/10.4236/jmp.2011.211161

[8] Olszewski, S. (2012) Journal of Modern Physics, 3, 217-220.

http://dx.doi.org/10.4236/jmp.2012.33030

[9] Olszewski, S. (2012) Quantum Matter, 1, 127-133.

http://dx.doi.org/10.1166/qm.2012.1010

[10] Olszewski, S. (2014) Journal of Modern Physics, 5, 1264-1271.

http://dx.doi.org/10.4236/jmp.2014.514127

[11] Olszewski, S. (2015) Quantum Matter, in Press.

[12] Ruark, A.E. (1928) Proceedings of the National Academy of Sciences of the United States of America, 14, 322-328.

http://dx.doi.org/10.1073/pnas.14.4.322

[13] Flint, H.E. (1928) Proceedings of the Royal Society A, London, 117, 630-637. http://dx.doi.org/10.1098/rspa.1928.0025

[14] Flint, H.E. and Richardson, O.W. (1928) Proceedings of the Royal Society A, London, 117, 637-649.

http://dx.doi.org/10.1098/rspa.1928.0026

[15] Landau, L.D. and Lifshitz, E.M. (1969) Mechanics, Electrodynamics. Izd. Nauka, Moscow.

[16] Landau, L.D. and Lifshitz, E.M. (1972) Quantum Mechanics. Izd. Nauka, Moscow.

[17] Bethe, H.A. (1947) Elementary Nuclear Theory. Wiley, New York.

[18] Sommerfeld, A. (1931) Atombau und Spektrallinien. Vol. 1, 5th Edition, Vieweg, Braunschweig.

[19] Kittel, C. (1987) Quantum Theory of Solids. 2nd Edition, Wiley, New York.