JMP  Vol.5 No.18 , December 2014
De Broglie’s Velocity of Transition between Quantum Levels and the Quantum of the Magnetic Spin Moment Obtained from the Uncertainty Principle for Energy and Time
ABSTRACT
The De Broglie’s approach to the quantum theory, when combined with the conservation rule of momentum, allows one to calculate the velocity of the electron transition from a quantum state n to its neighbouring state as a function of n. The paper shows, for the case of the harmonic oscillator taken as an example, that the De Broglie’s dependence of the transition velocity on n is equal to the n-dependence of that velocity calculated with the aid of the uncertainty principle for the energy and time. In the next step the minimal distance parameter provided by the uncertainty principle is applied in calculating the magnetic moment of the electron which effectuates its orbital motion in the magnetic field. This application gives readily the electron spin magnetic moment as well as the quantum of the magnetic flux known in superconductors as its result.

Cite this paper
Olszewski, S. (2014) De Broglie’s Velocity of Transition between Quantum Levels and the Quantum of the Magnetic Spin Moment Obtained from the Uncertainty Principle for Energy and Time. Journal of Modern Physics, 5, 2022-2029. doi: 10.4236/jmp.2014.518198.
References
[1]   De Broglie, L. (1923) Comptes Rendus, 177, 507-510.

[2]   De Broglie, L. (1923) Comptes Rendus, 177, 548-550.

[3]   De Broglie, L. (1923) Comptes Rendus, 177, 630-632.

[4]   De Broglie, L. (1924) Philosophical Magazine, 47, 446-458.
http://dx.doi.org/10.1080/14786442408634378

[5]   Jammer, M. (1966) The Conceptual Development of Quantum Mechanics. McGraw-Hill, New York.

[6]   Schiff, L.I. (1968) Quantum Mechanics. 3rd Edition, McGraw-Hill, New York.

[7]   Olszewski, S. (2011) Journal of Modern Physics, 2, 1305-1309.
http://dx.doi.org/10.4236/jmp.2011.211161

[8]   Olszewski, S. (2012) Journal of Modern Physics, 3, 217-220.
http://dx.doi.org/10.4236/jmp.2012.33030

[9]   Olszewski, S. (2012) Quantum Matter, 1, 127-133.
http://dx.doi.org/10.1166/qm.2012.1010

[10]   Olszewski, S. (2014) Journal of Modern Physics, 5, 1264-1271.
http://dx.doi.org/10.4236/jmp.2014.514127

[11]   Olszewski, S. (2015) Quantum Matter, in Press.

[12]   Ruark, A.E. (1928) Proceedings of the National Academy of Sciences of the United States of America, 14, 322-328.
http://dx.doi.org/10.1073/pnas.14.4.322

[13]   Flint, H.E. (1928) Proceedings of the Royal Society A, London, 117, 630-637. http://dx.doi.org/10.1098/rspa.1928.0025

[14]   Flint, H.E. and Richardson, O.W. (1928) Proceedings of the Royal Society A, London, 117, 637-649.
http://dx.doi.org/10.1098/rspa.1928.0026

[15]   Landau, L.D. and Lifshitz, E.M. (1969) Mechanics, Electrodynamics. Izd. Nauka, Moscow.

[16]   Landau, L.D. and Lifshitz, E.M. (1972) Quantum Mechanics. Izd. Nauka, Moscow.

[17]   Bethe, H.A. (1947) Elementary Nuclear Theory. Wiley, New York.

[18]   Sommerfeld, A. (1931) Atombau und Spektrallinien. Vol. 1, 5th Edition, Vieweg, Braunschweig.

[19]   Kittel, C. (1987) Quantum Theory of Solids. 2nd Edition, Wiley, New York.

 
 
Top