MSA  Vol.5 No.14 , December 2014
Mineralogical and Chemical Characteristics of Clays Consumed in the District of Abidjan (CÔte D’Ivoire)
ABSTRACT
Clay materials of the quarry of Bingerville (district of Abidjan) have been characterized by chemical analysis, X-rays diffraction, infrared spectroscopy and thermal analysis. These materials contain kaolinite (41% - 84%), illite (4% - 10%), quartz (14% - 27%), goethite (2% - 5%) and small amount of rutile (1%) that are not toxic minerals. They also contain some heavy metals which are beneficial to human biological activity (cobalt, copper, molybdenum, zinc) in tiny quantities. Some other heavy metals (lead, cadmium) which are considered as poisonous for human are present in very low content. The samples characterized by relatively fine grains are moderately crystallized. Their specific surface area varied from 26 to 43 m2·g1. The mineralogical and physicochemical characteristics of these samples are like ones known for their healing properties. The consumption by internal way of studied materials, although it may be beneficial, requires a sifting to remove coarse grains (Φ > 2 μm) and a previous microbiological control.

Cite this paper
Coulibaly, V. , Sei, J. , Koffi, L. , Oyetola, S. , Jdid, E. and Thomas, F. (2014) Mineralogical and Chemical Characteristics of Clays Consumed in the District of Abidjan (CÔte D’Ivoire). Materials Sciences and Applications, 5, 1048-1059. doi: 10.4236/msa.2014.514108.
References
[1]   Haussonne, J.-M., Carry, C., Bowen, P. and Barton, J. (2005) Céramiques et verres; Traité des matériaux. Presses Polytechniques et Universitaires Romandes, Lausanne (Suisse), Vol. 16.

[2]   Delon, J.F., Liétard, O., Cases, L.M., Richard, M., Sauret, G. and Maume, J.P. (1982) Possibilités d’emploi des Kaolins des Charentes dans le couchage des papiers et cartons. Bulletin de Mineralogie, 105, 571-581.

[3]   Ouachem, D. and Soltane, M. (2009) L’argile: Une alternative biologique dans l’alimentation des ruminants, Filière Ovine et Caprine, nº29-3ième trimestre.

[4]   Carretero, M.I. (2002) Clay Minerals and Their Beneficial Effects upon Human Health. A Review. Applied Clay Science, 21, 155-163.
http://dx.doi.org/10.1016/S0169-1317(01)00085-0

[5]   Viseras, C., Aguzzi, C., Cerezo, P. and Lopez-Galindo, A. (2007) Uses of Clay Minerals in Semisolid Health Care and Therapeutic Product. Applied Clay Science, 36, 37-50.
http://dx.doi.org/10.1016/j.clay.2006.07.006

[6]   Gomes, C. and Silva, J. (2001) Beach Sand and Bentonite of Porto Santo Island: Potentialities for Applications in Geomedicine. In: Gomes, C. and Silva, J., Eds., O Liberal, Camara de Lobos, Madeira, 60.

[7]   Gomes, C. and Silva, J. (2006) Minerals and Human Health/Os Minerais e a Saúde Humana. In: Gomes, C. and Silva, J., Eds., Litografia da Maia, Maia, 300.

[8]   Droy-Lefaix, M.T. and Tateo, F. (2006) Clays and Clay Minerals as Drugs, In: Bergaya, F., Theng, B.K.G., and Lagaly, G., Eds., Handbook of Clay Scienc Developments in Clay Science, 1, Elsevier, Amsterdam, 743-753.

[9]   Williams, L.B., Holland, M., Eberl, D.D., Brunet, T. and Brunet de Courrsou, L. (2004) Killer Clays! Natural Anti-bacterial Clay Minerals. Mineralogical Society Bulletin, 139, 3-8.

[10]   Tong, G., Yulong, M., Peng, G. and Zirong, X. (2005) Antibacterial Effects of the Cu(II)-Exchanged Montmorillonite on Escherichia coli K88 and Salmonella choleraesuis. Veterinary Microbiology, 105, 113-122.
http://dx.doi.org/10.1016/j.vetmic.2004.11.003

[11]   Ma’or, Z., Henis, Y., Along, Y., Orlov, E., Sorensen, K.B. and Oren, A. (2006) Antimicrobial Properties of Dead Sea Black Mineral Mud. International Journal of Dermatology, 45, 504-511.
http://dx.doi.org/10.1111/j.1365-4632.2005.02621.x

[12]   Haydel, S.E., Remineh, C.M. and Williams, L.B. (2008) Broad-Spectrum in Vitro Antibacterial Activities of Clay Minerals against Antibiotic-Susceptible and Antibiotic-Resistant Bacteria Pathogens. Journal of Antimicrobial Chemotherapy, 61, 353-361.
http://dx.doi.org/10.1093/jac/dkm468

[13]   Magana, S.M., Quintana, P., Aguilar, D.H., Toledo, J.A., Angeles-Chavez, C., Cortes, M.A., Leon, L., Freile-Pelegr?n, Y., Lopez, T. and Torres Sanchez, R.M. (2008) Antibacterial Activity of Montmorillonites Modified with Silver. Journal of Molecular Catalysis A: Chemical, 281, 192-199.
http://dx.doi.org/10.1016/j.molcata.2007.10.024

[14]   Coulibaly, V., Sei, J., Kouamé, N., Koua, A.A., Oyetola, S. and Brun, S. (2013) Measurement of Natural Radioactivity in the Clays Consummated in Côte d’Ivoire Using Gamma-Ray Spectrometry. Journal of Applied Sciences, 13, 140-146.

[15]   Taste, J.P. (1979) Environnements sédimentaires et structuraux quaternaires du littoral du golfe de guinée (Côte d’Ivoire, Togo et Benin). Thèse Doctorat d’Etat, Université Bordeaux I, Bordeaux, 175 p.

[16]   Farmer, V.C. (1974) The Layer Silicates. In: Farmer, V.C., The Infrared Spectra of Minerals, Mineralogical Society, London, 331-363.

[17]   Russell, J.D., Farmer, V.C. and Velde, B. (1970) Replacement of OH by OD in Layer Silicates and Identification of the Vibrations of These Groups in Infrared Spectra. Mineralogical Magazine, 37, 869-879.
http://dx.doi.org/10.1180/minmag.1970.037.292.01

[18]   Mendelovici, E., Yariv, S.H. and Villalba, R. (1979) Iron-Bearing Kaolinite in Venezuelan Laterite. I. Infrared Spectroscopy and Chemical Dissolution Evidence. Clay Minerals, 14, 323-331.
http://dx.doi.org/10.1180/claymin.1979.014.4.08

[19]   Giese, R.F. and Datta, P. (1973) Hydroxyl Orientation in Kaolinite, Dickite and Nacrite. American Mineralogist, 58, 471-479.

[20]   Cases, J.-M., Liétard, O., Yvon, J. and Delon, J.-F. (1982) Etude des propriétés cristallochimiques, morphologiques, superficielles des kaolinites désordonnées. Bullettin Minéralogique, 105, 439-455.

[21]   Delineau, T., Allard, T., Muller, J.-P., Barres, O., Yvon, J. and Cases, J.M. (1994) FTIR Reflectance vs. EPR Studies of Structural Iron in Kaolinites. Clays and Clay Minerals, 42, 308-320.
http://dx.doi.org/10.1346/CCMN.1994.0420309

[22]   Fan, H., Song, B. and Li, Q. (2006) Thermal Behavior of Goethite during Transformation to Hematite. Materials Chemistry and Physics, 98, 148-153.
http://dx.doi.org/10.1016/j.matchemphys.2005.09.005

[23]   Singh, B. and Gilkes, R.J. (1992) Properties of Soil Kaolinite from South-Western Australia. Journal of Soil Science, 43, 654-667.
http://dx.doi.org/10.1111/j.1365-2389.1992.tb00165.x

[24]   Melo, V.F., Singh, B., Schaefer, C.E.G.R., Novais, R.F. and Fontes, M.P.F. (2001) Chemical and Mineralogical Properties of Kaolinite-Rich Brazilian Soils. Soil Science Society of America Journal, 65, 1324-1333.
http://dx.doi.org/10.2136/sssaj2001.6541324x

[25]   Hart, R.D., Gilkes, R.J., Siradz, S. and Singh, B. (2002) The Nature of Soil Kaolins from Indonesia and Western Australia. Clays and Clay Minerals, 50, 198-207.
http://dx.doi.org/10.1346/000986002760832793

[26]   Toussaint, F., Fripiat, J.J. and Gastuche, M.C. (1963) Dehydroxylation of Kaolinite. I: Kinetics. The Journal of Physical Chemistry, 67, 26-30.
http://dx.doi.org/10.1021/j100795a007

[27]   Ortega, A., Rouquérol, F., Akhouayri, S., Laureiro, Y. and Rouquérol, J. (1993) Kinetical Study of the Thermolysis of Kaolinite between 30 ℃ and 1000 ℃ by Controlled Rate Evolved Gas Analysis. Applied Clay Science, 8, 207-214.
http://dx.doi.org/10.1016/0169-1317(93)90038-3

[28]   Bellotto, M., Gualtieri, A., Artioli, G. and Clark, S.M. (1995) Kinetic Study of the Kaolinite-Mulliteréaction Sequence. Part I: Kaolinite Dehydroxylation. Physics and Chemistry of Minerals, 22, 207-214.
http://dx.doi.org/10.1007/BF00202253

[29]   Jouenne, C.A. (1990) Traité de céramiques et Matériaux Minéraux. Edition Septima, Paris.

[30]   Brown, G. and Brindley, G.W. (1984) Crystal Structures of Clay Minerals and Their X-Ray Identification. 2nd Edition, Mineralogical Society, London, 305-360.

[31]   Okada, K., Otsuka, N. and Ossaka, J. (1986) Characterization of Spinel Phase Formed in the Kaolinite-Mullite Thermal Sequence. Journal of the American Ceramic Society, 69, 251-253.
http://dx.doi.org/10.1111/j.1151-2916.1986.tb07353.x

[32]   Srikrishna, K., Thomas, G., Martinez, R., Corral, M.P., De Aza, S. and Moya, J.S. (1990) Kaolinite-Mullitereactionseries: A TEM Study. Journal of Materials Science, 25, 607-612.
http://dx.doi.org/10.1007/BF00714083

[33]   Gualtieri, A., Belloto, M., Artioli, G. and Clark, S.M. (1995) Kinetic Study of the Kaolinite-Mullite Reaction Sequence. Part II: Mullite Formation. Physics and Chemistry of Minerals, 22, 215-222.
http://dx.doi.org/10.1007/BF00202254

[34]   Njopwouo, D. (1984) Minéralogie et physico-chimie des argiles de Bomkoul et de Balengou (Cameroun). Utilisation dans la polymérisation du styrène et dans le renforcement du caoutchouc naturel. Thèse de doctorat, d’État de l’Université de Yaoundé, Yaoundé.

[35]   Yvon, J., Baudracco, J., Cases, J.M. and Weiss, J. (1990) Eléments de minéralogie quantitative en micro-analyse des argiles. Matériaux argileux, structures, propriétés et applications. SFMC., Paris.

[36]   Coulibaly, V., Sei, J., Oyetola, S., Sougrati, M.T. and Jumas, J.C. (2012) Iron Speciation in the Clays Consummated in Côte d’Ivoire: A Transmission M?ssbauer Spectroscopy Study. Asian Journal of Applied Sciences, 5, 460-472.
http://dx.doi.org/10.3923/ajaps.2012.460.472

[37]   Liétard, O. (1977) Contribution à l’étude des propriétés physicochimiques cristallographiques et morphologiques des kaolins. Thèse doctorat ès-sciences, INPL, Nancy, 345 p.

[38]   Hinckley, D.N. (1962) Variability in “Crystallinity” Values among the Kaolin Deposits of the Coastal Plain of Georgia and South Carolina. Proceedings of the 11th National Conference on Clays and Clay Minerals, Ottawa, 13-17 August 1962, 229-235.

[39]   Smykatz-Kloss, W. (1974) Differential Thermal Analysis: Application and Result in Mineralogy. Springer Verlag Berlin Heidelberg, New York.
http://dx.doi.org/10.1007/978-3-642-65951-5

[40]   Russell, J.D. and Fraser, A.R. (1994) Infrared Methods In-Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Chapman and Hall, London.

[41]   Guyot, J. (1969) Mesure des surfaces spécifiques des argiles par adsorption. Annales Agronomiques, 20, 333-359.

[42]   Arias, M., Barral, M.T. and Diaz-Fierros, F. (1995) Effect of Iron and Aluminium Oxides on the Colloidal and Surface Properties of Kaolin. Clays and Clay Minerals, 43, 406-416.
http://dx.doi.org/10.1346/CCMN.1995.0430403

[43]   Borggaard, O.K. (1982) The Influence of Iron Oxides on the Surface Area of Soil. Journal of Soil Science, 33, 443-449.

[44]   Eaton, J.R. and Eaton. T.M. (1995) Bentonite: Public Ressearch Project: An Educational Compilation of Related Commentaries and Articles.
http://eytonsearth.org/bentonite.html

[45]   Carretero, M.I. and Pozo, M. (2009) Clay and Non-Clayminerals in the Pharmaceutical Industry. Part I. Excipients and Medical Applications. Applied Clay Science, 46, 73-80.
http://dx.doi.org/10.1016/j.clay.2009.07.017

[46]   Carnoy, C., Muller Alouf, H., Mullet, C., Droy-Lefaix, M.T. and Simonet, M. (2000) Oral Infection of Mice with Superantigenic Toxic Producing Yersinia pseudo tuberculosis. Effect of Diosmectite. International Journal of Medical Microbiology, 290, 477-482.

[47]   Meredith, T.J. and Vale, J.A. (1987) Treatment of Paraquat Poisoning in Man. Methods to Prevent Absorption. Human & Experimental Toxicology, 6, 49-57.
http://dx.doi.org/10.1177/096032718700600108

[48]   Lipson, S.M. and Stotzky, G. (1984) Effect of Proteins on Reovirus Adsorption to Clay Minerals. Applied and Environmental Microbiology, 8, 525-530.

[49]   Theodorou, V., Fioramonti, J., Droy-Lefaix, M.T., Plique, O., Bueno, L. (1994) Protective Action of Diosmectite Treatment on Digestive Disturbances Induced by Intestinal Anaphylaxis in the Guinea Pig. Alimentary Pharmacology & Therapeutics, 8, 295-299.
http://dx.doi.org/10.1111/j.1365-2036.1994.tb00291.x

 
 
Top