[1] Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F. and Smalley, R.E. (2003) C60: Buckminsterfullerene. Nature, 318, 162-163. http://dx.doi.org/10.1038/318162a0
[2] Bosi, S., Ros, T.D., Spalluto, G. and Prato, M. (2003) Fullerene Derivatives: An Attractive Tool for Biological Applications. European Journal of Medicinal Chemistry, 38, 913-923.
http://dx.doi.org/10.1016/j.ejmech.2003.09.005
[3] Bakry, R., Vallant, R.M., Najam-ul-Haq, M., Rainer, M., Szabo, Z., Huck, C.W. and Bonn, G.K. (2007) Medicinal Applications of Fullerenes. International Journal of Nanomedicine, 2, 639-649.
[4] Anilkumar, P., Lu, F., Cao, L., Luo, P.G., Liu, J.H., Sahu, S., Tackett, K.N., Wang, Y. and Sun, Y.P. (2011) Fullerenes for Applications in Biology and Medicine. Current Medicinal Chemistry, 18, 2045-2059. http://dx.doi.org/10.2174/092986711795656225
[5] Blom, P.W.M., Mihailetchi, V.D., Koster, L.J.A. and Markov, D.E. (2007) Device Physics of Polymer: Fullerene Bulk Heterojunction Solar Cells. Advanced Materials, 19, 1551-1566.
http://dx.doi.org/10.1002/adma.200601093
[6] Deibel, C. and Dyakonov, V. (2010) Polymer-Fullerene Bulk Heterojunction Solar Cells. Reports on Progress in Physics, 73, Article ID: 096401. http://dx.doi.org/10.1088/0034-4885/73/9/096401
[7] Varotto, A., Treat, N.D., Jo, J., Shuttle, C.G., Batara, N.A., Brunetti, F.G., Seo, J.H., Chabinyc, M.L., Hawker, C.J., Heeger, A.J. and Wudl, F. (2011)1,4-Fullerene Derivatives: Tuning the Properties of the Electron Transporting Layer in Bulk-Heterojunction Solar Cells. Angewandte Chemie, 50, 5166-5169.
[8] Liu, B., Png, R.Q., Zhao, L.H., Chua, L.L., Friend, R.H. and Ho, P.K. (2012) High Internal Quantum Efficiency in Fullerene Solar Cells Based on Crosslinked Polymer Donor Networks. Nature Communications, 3, 1321. http://dx.doi.org/10.1038/ncomms2211
[9] Tanigaki, K., Ebbesen, T.W., Saito, S., Mizuki, J., Tsai, J.S., Kubo, Y. and Kuroshima, S. (1991) Superconductivity at 33 K in CsxRbyC60. Nature, 352, 222. http://dx.doi.org/10.1038/352222a0
[10] Buntar, V. and Weber, H.W. (1996) Magnetic Properties of Fullerene Superconductors. Superconductor Science and Technology, 9, 599-615. http://dx.doi.org/10.1088/0953-2048/9/8/001
[11] Hott, R., Kleiner, R., Wolf, T. and Zwicknagl, G. (2013) Review on Superconducting Materials. Wiley-VCH, Hoboken.
[12] Chai, Y., Guo, T., Jin, C.M., Haufler, R.E., Chibante, L.P.F., Fure, J., Wang, L.H., Alford, J.M. and Smalley, R.E. (1991) Fullerenes with Metals Inside. Journal of Physical Chemistry, 95, 7564-7568.
http://dx.doi.org/10.1021/j100173a002
[13] Bethune, D.S., Johnson, R.D., Salem, J.R., Vries, M.S. and Yannoni, C.S. (1993) Atoms in Carbon Cages: The Structure and Properties of Endohedral Fullerenes. Nature, 366, 123-128.
http://dx.doi.org/10.1038/366123a0
[14] Hirata, T., Hatakeyama, R., Mieno, T. and Sato, N. (1996) Production and Control of K-C60 Plasma for Material Processing. Journal of Vacuum Science & Technology A, 14, 615-619.
http://dx.doi.org/10.1116/1.580154
[15] Chaur, M.N., Melin, F., Ortiz, A.L. and Echegoyen, L. (2009) Chemical, Electrochemical, and Structural Properties of Endohedral Metallofullerenes. Angewandte Chemie International Edition, 48, 7514-7538. http://dx.doi.org/10.1002/anie.200901746
[16] Heath, J.R., O’Brien, S.C., Zhang, Q., Liu, Y., Curl, R.F., Tittel, F.K. and Smalley, R.E. (1985) Lanthanum Complexes of Spheroidal Carbon Shells. Journal of the American Chemical Society, 107, 7779-7780. http://dx.doi.org/10.1021/ja00311a102
[17] Aoyagi, S., Nishibori, E., Sawa, H., Sugimoto, K., Takata, M., Miyata, Y., Kitaura, R., Shinohara, H., Okada, H., Sakai, T., et al. (2010) A Layered Ionic Crystals of Polar Li@C60 Superatoms. Nature Chemistry, 2, 678-683. http://dx.doi.org/10.1038/nchem.698
[18] Okada, H., Komuro, T., Sakai, T., Matsuo, Y., Ono, Y., Omote, K., Yokoo, K., Kawachi, K., Kasama, Y., Ono, S., et al. (2012) Preparation of Endohedral Fullerene Containing Lithium (Li@C60) and Isolation as Pure Hexafluorophosphate Salt ([Li+@C60][PF6-]). RSC Advances, 2, 10624-10631.
http://dx.doi.org/10.1039/c2ra21244g
[19] Murata, Y., Murata, M. and Komatsu, K. (2003) 100% Encapsulation of a Hydrogen Molecule into an Open-Cage Fullerene Derivative and Gas-Phase Generation of H2@C60. Journal of the American Chemical Society, 125, 7152-7153. http://dx.doi.org/10.1021/ja0354162
[20] Komatsu, K., Murata, M. and Murata, Y. (2005) Encapsulation of Molecular Hydrogen in Fullerene C60 by Organic Synthesis. Science, 307, 238-240. http://dx.doi.org/10.1126/science.1106185
[21] Ito, S., Shimotani, H., Takagi, H. and Dragoe, N. (2008) On the Synthesis Conditions of N and N2 Endohedral Fullerenes. Fullerenes, Nanotubes and Carbon Nanostructures, 16, 206-213.
[22] Sauders, M., Cross, R.J., Jimenez-Vazquez, H.A., Shimshi, R. and Khong, A. (1996) Noble Gas Atoms inside Fullerences. Science, 271, 1693-1697. http://dx.doi.org/10.1126/science.271.5256.1693
[23] Peng, R.F., Chu, S.J., Hyang, Y.M., Yu, H.J., Wang, T.S., Jin, B., Fu, Y.B. and Wang, C.R. (2009) Preparation of He@C60 and He2@C60 by an Explosive Method. Journal of Materials Chemistry, 19, 3602-3605. http://dx.doi.org/10.1039/b904234b
[24] Kurotobi, K. and Murata, Y. (2011) A Single Molecule of Water Encapsulated in Fullerene C60. Science, 333, 613-616.
[25] Beduz, C., Carravetta, M., Chen, J.C., Consistrè, M., Denning, M., Frunzi, M., et al. (2012) Quantum Rotation of Ortho and Para-Water Encapsulated in a Fullerene Cage. Proceedings of the National Academy of Sciences of the United States of America, 109, 12894-12898.
http://dx.doi.org/10.1073/pnas.1210790109
[26] Aoyagi, S., Hoshino, N., Akutagawa, T., Sado, Y., Kitaura, R., Shinohrara, H., Sugimoto, K., Zhang, R. and Murata, Y. (2014) A Cubic Dipole Lattice of Water Molecules Trapped inside Carbon Cages. Chemical Communications, 50, 524-526. http://dx.doi.org/10.1039/c3cc46683c
[27] Popov, A.A., Yang, S. and Dunsch, L. (2013) Endohedral Fullerenes. Chemical Reviews, 113, 5989-6113. http://dx.doi.org/10.1021/cr300297r
[28] Noguchi, Y., Sugino, O., Okada, H. and Matsuo, Y. (2013) First-Principles Investigation on Structural and Optical Properties of M+@C60 (Where M = H, Li, Na, and K). Journal of Physical Chemistry C, 117, 15362-15368. http://dx.doi.org/10.1021/jp4041259
[29] Malani, H. and Zhang, D. (2013) Theoretical Insight for the Metal Insertion Pathway of Endohedral Alkali Metal Fullerenes. Journal of Physical Chemistry A, 117, 3521-3528.
http://dx.doi.org/10.1021/jp4007697
[30] Cioslowski, J. (1991) Endohedral Chemistry: Electronic Structures of Molecules Trapped inside the C60 Cage. Journal of the American Chemical Society, 113, 4139-4141.
http://dx.doi.org/10.1021/ja00011a013
[31] Cioslowski, J. and Fleischmann, E.D. (1991) Endohedral Complexes: Atoms and Ions inside the C60 Cage. Journal of Chemical Physics, 94, 3730-3734. http://dx.doi.org/10.1063/1.459744
[32] Hira, A.S. and Ray, A.K. (1995) Interaction Sites of a Na+ Ion and a Na Atom with a C60 Molecule. Physical Review A, 52, 141-148. http://dx.doi.org/10.1103/PhysRevA.52.141
[33] Santos, J.D., Longo, E., Banja, M.E., Espinoza, V.A.A., Flores, J.V. and Taft, C.A. (2005) Semi-Empirical Studies of Alkaline Metals-Fullerene MxC60, M@C60 Interactions. Journal of Molecular Structure: THEOCHEM, 713, 161-169. http://dx.doi.org/10.1016/j.theochem.2004.08.055
[34] Ohtsuki, T., Masumoto, K., Ohno, K., Maruyma, Y., Kawazoe, Y., Sueki, K. and Kikuchi, K. (1996) Insertion of Be Atoms in C60 Fullerene Cages: Be@C60. Physical Review Letters, 77, 3522-3524.
http://dx.doi.org/10.1103/PhysRevLett.77.3522
[35] Lyras, A. and Bachau, H. (2005) Electronic Correlation Effects in a Model of Endohedral Mg (Mg@C60). Journal of Physics B: Atomic, Molecular and Optical Physics, 38, 1119-1131.
http://dx.doi.org/10.1088/0953-4075/38/8/004
[36] Stewart, J.J.P. (2013) Optimization of Parameters for Semiempirical Methods VI: More Modifications to the NDDO Approximations and Re-Optimization of Parameters. Journal of Molecular Modeling, 19, 1-32. http://dx.doi.org/10.1007/s00894-012-1667-x
[37] Stewart, J.J.P. (2012) MOPAC2012, Stewart Computational Chemistry. Colorado Springs, CO.
HTTP://OpenMOPAC.net
[38] Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M. and Montgomery, J.A. (1993) General Atomic and Molecular Electronic Structure System. Journal of Computational Chemistry, 14, 1347-1363. http://dx.doi.org/10.1002/jcc.540141112
[39] Lee, C., Yang, W. and Parr, R.G. (1998) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B, 37, 785-789.
http://dx.doi.org/10.1103/PhysRevB.37.785
[40] Becke, A.D. (1993) Density Functional Thermochemistry. III. The Role of Exact Exchange. Journal of Chemical Physics, 98, 5648-5652. http://dx.doi.org/10.1063/1.464913
[41] Tomasi, J., Mennucci, B. and Cammi, R. (2005) Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105, 2999-3094. http://dx.doi.org/10.1021/cr9904009
[42] Dunlap, B.I., Ballester, J.L. and Schmidt, P.P. (1992) Interactions between Fullerene C60 and Endohedral Alkali Atoms. Journal of Physical Chemistry, 96, 9781-9787.
http://dx.doi.org/10.1021/j100203a038
[43] Parr, R.G., Donnelly, R.A., Levy, M. and Palke, W.E. (1978) Electronegativity: The Density Functional Viewpoint. Journal of Chemical Physics, 68, 3801-3807. http://dx.doi.org/10.1063/1.436185
[44] Parr, R.G. and Pearson, R.G. (1983) Absolute Hardness: Companion Parameter to Absolute Electronegativity. Journal of the American Chemical Society, 105, 7512-7516.
http://dx.doi.org/10.1021/ja00364a005
[45] Shameema, O., Ramachandran, C.N. and Sathyamurthy, N. (2006) Blue Shift in X-H Stretching Frequency of Molecules Due to Confinement. Journal of Physical Chemistry A, 110, 2-4.
http://dx.doi.org/10.1021/jp056027s
[46] Benning, P.J., Martins, J.L., Weaver, J.H., Chibante, L.P.F. and Smalley, R.E. (1991) Electronic Structure of KxC60: Insulating, Metallic, and Superconducting Character. Science, 252, 1417-1419.
http://dx.doi.org/10.1126/science.252.5011.1417
[47] Takahashi, T., Susuzi, S., Morikawa, T., Katayama-Yoshida, H., Hasegawa, S., Inokuchi, H., Seki, K., Kikuchi, K., Suzuki, S., Ikemoto, K. and Ashiba, Y. (1992) Pseudo-Gap at the Fermi Level in K3C60 Observed by Photoemission and Inverse Photoemission. Physical Review Letters, 68, 1232.
http://dx.doi.org/10.1103/PhysRevLett.68.1232
[48] Lof, R.W., van Veendaal, M.A., Koopmans, B., Jonkman, H.T. and Sawatzky, G.A. (1992) Band Gap, Excitons, and Coulomb Interaction in Solid C60. Physical Review Letters, 68, 3924.
http://dx.doi.org/10.1103/PhysRevLett.68.3924
[49] Weaver, J.H. (1992) Electronic Structures of C60, C70 and the Fullerides: Photoemission and Inverse Photoemission Studies. Journal of Physics and Chemistry of Solids, 53, 1433-1447.
http://dx.doi.org/10.1016/0022-3697(92)90237-8
[50] Prylutskyy, Y.I., Durov, S.S., Bulavin, L.A., Adamenko, I., Moroz, K.O., Graja, A., Bogucki, A. and Scharff, P. (2001) C 1s Ionisation Potential and Energy Referencing for Solid C60 Films on Metal Surfaces. Fullerene Science and Technology, 9, 167-174. http://dx.doi.org/10.1081/FST-100102964
[51] Braga, M., Larsson, S., Rosen, A. and Volosov, A. (1991) Electronic Transition in C60. On the Origin of the Strong Interstellar Absorption at 217nm. Astronomy and Astrophysics, 245, 232-238.
[52] Orlandi, G. and Negri, F. (2002) Electronic States and Transitions in C60 and C70 Fullerenes. Photochemical & Photobiological Sciences, 1, 289-308. http://dx.doi.org/10.1039/b200178k