ARS  Vol.3 No.4 , December 2014
Reflectance Spectra Measurements of Mt. Etna: A Comparison with Multispectral/Hyperspectral Satellite
Abstract: We present a collection of eight reflectance spectra representative of Mt. Etna volcano lava flows. The reflectance spectra were measured with a FieldSpecPro from 350 nm to 2500 nm during a fieldwork in June 2007. The reflectance has been compared with reflectance obtained by multispectral Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) and by hyper spectral EO1-Hyperion satellites. Prior the comparison, reflectance spectra have been convolved with ASTER and EO1-Hyperion spectral functions. The results show percentage errors in accordance to those present in literature in the ASTER SWIR range. However, some differences have been confirmed for the ASTER reflectance product (ASTER_07) in visible channels. Regarding EO1-Hyperion, a good agreement of reflectance against field measurement has been found resulting in 5% percentage maximum error in the VIS and up 30% in SWIR spectral range. The capacity of reproducing spectral feature by EO1-Hyperion has been checked on bright pixels (ice-snow) in the acquired image.
Cite this paper: Amici, S. , Piscini, A. and Neri, M. (2014) Reflectance Spectra Measurements of Mt. Etna: A Comparison with Multispectral/Hyperspectral Satellite. Advances in Remote Sensing, 3, 235-245. doi: 10.4236/ars.2014.34016.

[1]   Clark, R.N. (1999) Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. In: Rencz, A.N., Ed., Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences, John Wiley and Sons, New York, 3-58.

[2]   Hunt, G.R. (1997) Spectral Signatures of Particulate Materials in the Visible and near Infrared. Geophysics, 42, 501-513.

[3]   Madani, A.A. (2011) Spectral Properties of Carbonized Ultramafic Mantle Xenoliths and Their Host Olivine Basalts, Jabal Al Maqtal Basin, South Eastern Deserr, Egypt, Using ASD FieldSpec Spectroradiometer. The Egyptian Journal of Remote Sensing and Space Science, 14, 41-48.

[4]   Amici, S., Piccioni, G., Coradini, A. and Solazzo, S. (2000) VIRTIS-M Laboratory Spectral Measurements of Analogues Cometary Samples. Planetary and Space Science, 48, 411-417.

[5]   Capaccioni, F., Bellucci, G., Orosei, R. Amici, S., Bianchi, R., Blecka, M., Capria, M.T., Coradini, A., Erard, S., Fonti, S., Formisano, V., Forni, O., Mustard, J., Piccioni, G., Pieters, C., Poscolieri, M., Battistelli, E., Romoli, A., Digianpietro, M., Espinasse, S., Magnani, M. and Pasqui, C. (2001) MARS-IRMA: In-Situ Infrared Microscope Analysis of Martian Soil and Rock Sample. Advances in Space Research, 28, 1219-1224.

[6]   Sgavetti, M. Pompilio, L. Roveria, M. Manzia, V., Valentino, G.M., Lugli, S., Carli, C., Amici, S., Marchese, F. and Lacava, T. (2009) Two Geologic Systems Providing Terrestrial Analogues for the Exploration of Sulfate Deposits on Mars: Initial Spectral Characterization. Planetary and Space Science, 57, 614-627.

[7]   Amici, S., Piscini, A., Buongiorno, M.F. and Pieri, D. (2012) Geological Classification of Volcano Teide by Hyperspectral and Multispectral Satellite Data. International Journal of Remote Sensing, 34, 3356–3375.

[8]   Goryniuk, M.C., Rivard, B.A. and Jones, B. (2004) The Reflectance Spectra of Opal-A (0.5 - 25 um) from the Taupo VolcanicZone: Spectra That May Identify Hydrothermal Systema on Planetary Surfaces. Geophysical Research Letters, 31, L24701.

[9]   De Angelis, S., De Sanctis, M.C., Ammannito, E., Altieri, F., Carli, C., Frigeri, A., Boccaccini, A. and Giardino, M. (2014) Analysis of Rocks Particulates by VNIR Spectroscopy with Ma_Miss Instrument Breadboard. 45th Lunar and Planetary Science Conference, The Woodlands, 17-21 March 2014, 1713.

[10]   Amici, S. (2010) Calibration and Validation (CAL/VAL) of Remote Sensing Data and Spectral Characterization of Volcanic Rocks. PhD Thesis, University of Parma, Parma.

[11]   Pazand, K., Sarvestani, J.F., Reza, M. and Ravasan, S. (2013) Hydrothermal Alteration Mapping Using ASTER Data for Reconnaissance Porphyry Copper Mineralization in the Ahar Area, NW Iran. Journal of the Indian Society of Remote Sensing, 41, 379-389.

[12]   Pour, A.B. and Hashim, M. (2012) The Application of ASTER Remote Sensing Data to Porphyry Copper and Epithermal Gold Deposits. Ore Geology Reviews, 44, 1-9.

[13]   Honarmand, M., Ranjbar, H. and Shahabpour, J. (2013) Combined Use of ASTER and ALI Data for Hydrothermal Alteration Mapping in the Northwestern Part of the Kerman Magmatic Arc, Iran. International Journal of Remote Sensing, 34, 2023-2046.

[14]   Millington, A.C. and Townshend, J.R.G. (1987) The Potential of Satellite Remote Sensing for Geomorphological Investigations: An Overview. In: Gardiner, V., Ed., International Geomorphology, Wiley, Chichester, 331-342.

[15]   Thenkabail, P.S., Lyon, J.G. and Huete, A., Eds. (2012) Hyperspectral Remote Sensing of Vegetation. CRC Press, Boca Raton.

[16]   Gomez, C., Rossel, R.A.V. and McBratney, A.B. (2008) Soil Organic Carbon Prediction by Hyperspectral Remote Sensing and Field Vis-NIR Spectroscopy: An Australian Case Study. Geoderma, 146, 403-411.

[17]   Waldhoff, G., Bubenzer, O., Bolten, A., Koppe, W. and Bareth, G. (2008) Spectral Analysis of ASTER, Hyperion, and Quickbird Data for Geomorphological and Geological Research in Egypt (Dakhla Oasis, Western Desert). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1201-206.

[18]   Taner San, B. and Lütfi Süzen, M. (2011) Evaluation of Cross-Track Illumination in EO-1 Hyperion Imagery for Lithological Mapping. International Journal of Remote Sensing, 32, 7873-7889.

[19]   van der Meer, F.D., van der Werff, H.M.A., van Ruitenbeek, F.J.A., Hecker, C.A., Bakker, W.H., Noomen, M.F., van der Meijde, M., Carranza, E.J.M., de Smeth, J.B. and Woldai, T. (2012) Multi- and Hyperspectral Geologic Remote Sensing: A Review. International Journal of Applied Earth Observation and Geoinformation, 14, 112-128.

[20]   Amici, S., Piscini, A., Buongiorno, M.F. and Pieri, D. (2013) Geological Classification of Volcano Teide by Hyperspectral and Multispectral Satellite Data. International Journal of Remote Sensing, 34, 3356-3375.

[21]   Lentini, F. (1982) The Geology of the Mt. Etna Basement. In: Romano, R., Ed., Mount Etna Volcano, a Review of Recent Earth Sciences Studies, Mem. Soc. Geol. Ital., 23, 7-25.

[22]   Lanzafame, G., Leonardi, A., Neri, M. and Rust, D. (1997) Late Overthrust of the Appenine-Maghrebian Chain at the NE periphery of Mt. Etna, Sicily. Comptes Rendus de l’Académie des Sciences Paris IIa, 324, 325-332.

[23]   Neri, M., Mazzarini, F., Tarquini, S., Bisson, M., Isola, I., Behncke, B. and PareschiM, T. (2008) The Changing Face of Mount Etna’s Summit Area Documented with Lidar Technology. Geophysical Research Letters, 35, Article ID: L09305.

[24]   Mazzarini, F., Favalli, M., Isola, I., Neri, M. and Pareschi, M.T. (2008) Surface Roughness of Pyroclastic Deposits at Mt. Etna by 3D Laser Scanning. Annals of Geophysics, 51, 813-822.

[25]   Spinetti, C., Mazzarini, F., Casacchia, R., Colini, L., Neri, M., Behncke, B., Salvatori, R., Buongiorno, M.F. and Pareschi, M.T. (2009) Spectral Properties of Volcanic Materials from Hyperspectral Field and Satellite Data Compared with LiDAR Data at Mt. Etna. International Journal of Applied Earth Observation and Geoinformation, 11, 142-155.

[26]   Behncke, B., Neri, M. and Nagay, A. (2005) Lava Flow Hazard at Mount Etna (Italy): New Data from a GIS-Based Study. Special Paper: Geological Society of America, 396, 187-205.

[27]   Behncke, B., Calvari, S., Giammanco, S., Neri, M. and Pinkerton, H. (2008) Pyroclastic Density Currents Resulting from Interaction of Basaltic Magma with Hydrothermally Altered Rock: An Example from the 2006 Summit Eruptions of Mount Etna, Italy. Bulletin of Volcanology, 70, 1249-1268.

[28]   Neri, M., Acocella, V., Behncke, B., Giammanco, S., Mazzarini, F. and Rust, D. (2011) Structural Analysis of the Eruptive Fissures at Mount Etna (Italy). Annales Geophysicae, 54, 464-479.

[29]   Hatchell, D.C. (1999) ASD Technical Guide. 3rd Edition, Analytical Spectral Devices Inc, Boulder.

[30]   Musacchio, M., Amici, S., Teggi, S., Pompilio, L., Sgavetti, M. and Buongiorno, M.F. (2007) Una nuova procedura per le correzioni atmosferiche: Applicazione sulla solfatara di Pozzuoli. Rivista Italiana di Telerilevamento, 39, 77-86.

[31]   Brailley, B. (2007) ASTER Data Products: Generation Characteristics and Access. AIT-2007, 39, 19-31.

[32]   Fuijisada, H. (1995) Design and Performance of ASTER Instrument. Proceedings of SPIE, 2583.

[33]   Abrams, M. (2000) The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) Data Products for the High Spatial Resolution Imager on NASA’s Terra Platform. International Journal of Remote Sensing, 21, 847-859.

[34]   Yamaguchi, Y., Kahake, A.B., Tsu, H., Kawakami, T. and Pniel, M. (1998) Overview of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36, 1062-1071.

[35]   Pieri, D.C. and Abrams, M.J. (2004) ASTER Watches the World’s Volcanoes: A New Paradigm for Volcanological Observations from Orbit. Journal of Volcanology and Geothermal Research, 135, 13-28.

[36]   Fujisada, H. (1998) ASTER Level-1 Data Processing Algorithm. IEEE Transactions on Geoscience and Remote Sensing, 36, 1101-1112.

[37]   Kieffer, H.H., Mullins, K.F. and MacKinnon, D.J. (2008) Validation of the ASTER Instrument Level 1A Scene Geometry. Photogrammetric Engineering & Remote Sensing, 74, 289-301.

[38]   Bailey, G.B. (2007) ASTER Data and Products: Generation, Characteristics, and Access. Rivista Italiana di Telerilevamento, 39, 19-31.

[39]   Barry, P.S., Jarecke, P., Pearlman, J., Jupp, D.L.B., Lovell, J. and Campbell, S. (2002) Radiometric Calibration Validation of the Hyperion Instrument Using “In Situ Truth” at a Site in Lake Frome. Proceedings of SPIE, 4480, 242-246.

[40]   Biggar, S.F., Thome, K.J. and Wisniewski, W. (2003) Vicarious Radiometric Calibration of EO-1 Sensors by Reference to High-Reflectance Ground Targets. IEEE Transactions on Geoscience and Remote Sensing, 41, 1174-1179.

[41]   EO1-User Guide (2004)

[42]   FLAASH Atmosferic Correction Module, EXELIS, 2004.

[43]   Sgavetti, M., Pompilio, L. and Meli, S. (2006) Reflectance Spectroscopy (0.3-2.5micron) at Various Scales for Bulk-Rock Identification. Geosphere, 2, 142-160.

[44]   Bergstrom, R.W., Pilewskie, P., Russell, P.B., Redemann, J., Bond, T.C., Quinn, P.K. and Sierau, B. (2007) Spectral Absorption Properties of Atmospheric Aerosols. Atmospheric Chemistry and Physics, 7, 5937-5943.

[45]   Abrams, M., Hook, S. and Ramachandran, B. (2002) ASTER User Handbook, v2: Advanced Spaceborne Thermal Emission and Reflection Radiometer. Jet Propulsion Laboratory, Pasadena.

[46]   Mauer, J. (2002) Retrieval of Surface Albedo from Space.

[47]   Kruse, F.A., Boardman, J.W., Huntington, J.F., Mason, P. and Quigley, M.A. (2002) Evaluation and Validation of EO-1 Hyperion for Geologic Mapping. IGARSS 2002, 24-28 June 2002, Toronto.

[48]   Hall, D.K. and Martinec, J. (1985) Remote Sensing of Ice and Snow. Chapman and Hall, New York, 189.

[49]   Clark, R.N. (1981) Water Frost and Ice: The Near-Infrared Spectral Reflectance 0.65-2.5 μm. Journal of Geophysical Research, 86, 3087-3096.