MSA  Vol.5 No.14 , December 2014
Micromagnetic Investigation of Microwave Permeability of Magnetic Artificial Spin Ice
ABSTRACT
The complex permeability of the artificial spin ice array at different magnetic states is calculated using the micromagnetic simulation method. It is observed that the permeability spectra are dependent on the magnetization distributions of the array. The dependence of the permeability spectrum on the applied magnetic field strength and on the spacing gap between the neighboring elements is also investigated. Depending on the initial magnetization saturating direction, the permeability spectrum exhibits different sensitivity to the strength of the external applied magnetic field and to the spacing distance between the comprising elements of the artificial spin ice array.

Cite this paper
Ma, F. , Wu, Y. and Zong, B. (2014) Micromagnetic Investigation of Microwave Permeability of Magnetic Artificial Spin Ice. Materials Sciences and Applications, 5, 991-995. doi: 10.4236/msa.2014.514100.
References
[1]   Wang, R.F., Nisoli, C., Freitas, R.S., Li, J., McConville, W., Cooley, B.J., Lund, M.S., Samarth, N., Leighton, C., Crespi, V.H. and Schiffer, P. (2006) Artificial “Spin Ice” in a Geometrically Frustrated Lattice of Nanoscale Ferromagnetic Islands. Nature, 439, 303-306.
http://doi:10.1038/nature04447

[2]   Heyderman, L.J. and Stamps, R.L. (2013) Artificial Ferroic Systems: Novel Functionality from Structure, Interactions and Dynamics. Journal of Physics: Condensed Matter, 25, 363201.
http://doi:10.1088/0953-8984/25/36/363201

[3]   Nisoli, C., Moessner, R. and Schiffer, P. (2013) Colloquium: Artificial Spin Ice: Designing and Imaging Magnetic Frustration. Reviews of Modern Physics, 85, 1473-1490.
http://dx.doi.org/10.1103/RevModPhys.85.1473

[4]   Tanaka, M., Saitoh, E., Miyajima, H., Yamaoka, T. and Iye, Y. (2006) Magnetic Interactions in a Ferromagnetic Honeycomb Nanoscale Network. Physical Review B, 73, 052411.
http://dx.doi.org/10.1103/PhysRevB.73.052411

[5]   Donahue, M.J. and Porter, D.G. OOMMF User’s Guide, Version 1.0.
http://math.nist.gov/oommf/

[6]   Gérardin, O., Ben Youssef, J., Le Gall, H., Vukadinovic, N., Jacquart, P.M. and Donahue, M.J. (2000) Micromagneics of the Dynamic Susceptibility for Coupled Permalloy Stripes. Journal of Applied Physics, 88, 5899-5903.
http://dx.doi.org.libproxy1.nus.edu.sg/10.1063/1.1320011

[7]   Dao, N., Donahue, M.J., Dumitru, I., Spinu, L., Whittenburg, S.L. and Lodder, J.C. (2004) Dynamic Susceptibility of Nanopillars. Nanotechnology, 15, S634-S638.
http://doi:10.1088/0957-4484/15/10/022

[8]   Ma, F.S., Lim, H.S., Wang, Z.K., Piramanayagam, S.N., Ng, S.C. and Kuok, M.H. (2011) Micromagnetic Study of Spin Wave Propagation in Bicomponent Magnonic Crystal Waveguides. Applied Physics Letters, 98, 153107.
http://dx.doi.org.libproxy1.nus.edu.sg/10.1063/1.3579531

[9]   Ma, F.S., Lim, H.S., Wang, Z.K., Piramanayagam, S.N., Ng, S.C. and Kuok, M.H. (2012) Band Structures of Exchange Spin Waves in One-Dimensional Bi-Component Magnonic Crystals. Journal of Applied Physics, 111, 064326.
http://dx.doi.org.libproxy1.nus.edu.sg/10.1063/1.3698617

[10]   Gérardin, O., Le Gall, H., Donahue, M.J. and Vukadinovic, N. (2001) Micromagnetic Calculation of the High Frequency Dynamics of Nano-Size Rectangular Ferromagnetic Stripes. Journal of Applied Physics, 89, 7012.
http://dx.doi.org.libproxy1.nus.edu.sg/10.1063/1.1360390

 
 
Top