[1] Taton TA (2001) Nanotechnology: Boning up on biology. Nature 412: 491-492.
[2] Kim BS, Baez CE, Atala A (2000) Biomaterials for tissue engineering. World J Urol 18: 2-9.
[3] Basmaji P et al. Brazilian patent number: PI0604760-2.
[4] Tuzlakoglu K, Bolgen N, Salgado AJ et AL (2005) Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering. J Mater Sci: Mater Med16: 1099-1104.
[5] Czaja, W, Krystynowicz A, Bielecki S et a (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27: 145-151.
[6] Dahlin C, Linde A, Gottlow J et al (1998) Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg 81: 672-676.
[7] Macedo NL, Matuda FS, De Macedo LGS et al. (2004) Evaluation of two membranes in guided bone tissue regeneration: histological study in rabbits. Braz J Oral Sci 3: 395-400.
[8] Hunziker EB (2001) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartilage 10: 432-463.
[9] Svensson A, Nicklasson E, Harrah T et al (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26: 419-431.
[10] Aslan M, Simsek G, Dayl E (2004) Guided bone regeneration (GBR) on healing bone defects: a histological study in rabbits. J Contemp Dent Pract 2: 114-123.
[11] Carvalho RS, Nelson D, Keldernian H et al (2003) Guided bone regeneration to repair an osseous defect. Am J Orthod Dentofacial Orthop 123: 455-467.
[12] Iamaguti LS, Brand?o CVS, Pellizzon CH et al (2008) Análise histológica e morfométrica do uso de membrana biossintética de celulose em trocleoplastia experimental de c?es. Pesq Vet Bras 28:195-200.
[13] Helenius G, B?ckdahl H, Bodin A et al (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res- A76: 431-438.
[14] Grande CJ, Torres FG, Gomez CM et al (2009) Development of self-assembled bacterial cellulose–starch nanocomposites. Mater Sci Eng-C 29: 1098-1104.
[15] Grande CJ, Torres FG, Gomez CM et al. (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomaterialia 5: 1605-1615.
[16] Bhattarai SJ, Bhattarai N, Yi HK et al (2005) Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25: 2595-602.
[17] Yang S, Leong KF, Du Z et al. (2001) The design of scaffolds for use in tissue engineering Part I. Traditional factors Tissue Eng 7: 679-89.
[18] Chen GP, Ushida T, Tateishi T (2000) Hybrid biomaterials for tissue engineering: a preparative method for PLA or PLGA-collagen hybrid sponges. Adv Mater 12: 455-467.
[19] Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55: 1613-1629.
[20] Meinel L, Langer R, Vunjak-Novakovic G et al. (2004) Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng 32: 112-122.
[21] Korkusuz F, Korkusuz P, Hasirci V(2004) In vivo tissue engineering of bone using poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) and collagen scaffolds. Tissue Eng 10: 1234-1250.
[22] Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material A. Bohn, Polymer Science 44: 3358-3393.
[23] Valido DP, Bastos TS, Albuquerque-Júnior RLC et al. (2010) Estudo preliminar da utiliza??o de otólitos de Cynoscion acoupa sobre o processo de neoforma??o óssea em ratos J Bras Patol Med Lab 46: 315-322.
[24] Luginbuehl V, Wenk E, Koch A et al. (2005) Insulin-like growth factorI-releasing alginate-tricalciumphosphate composites for bone regeneration. Pharm Res 22:940-950
[25] Seol YJ, Lee JY, Park YJ et al. (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26: 1037-1041.