[1] N. D. Alikakos, “Some Basic Facts on the System ,” Procceedings of the American Mathematical Society, Vol. 139, No. 1, January 2011, pp. 153-162. doi:10.1090/S0002-9939-2010-10453-7
[2] F. Bethuel, P. Gravejat and J.-C. Saut, “Traveling Waves for the Gross-Pitaevskii Equation II,” Communications in Mathemati-cal Physics, Vol. 285, No. 2, 2009, pp. 567-651. doi:10.1007/s00220-008-0614-2
[3] H. Brezis, “Comments on Two Notes by L. Ma and X. Xu,” Comptes Rendus Mathematique, 2011.
[4] A. Chaljub-Simon and Y. Cho-quet-Bruhat, “Global Solutions of the Lichnerowicz Equation in General Relativity on an Asymptotically Euclidean Com-plete Manifold,” General Relativity and Gravitation, Vol. 12, No. 2, 1980, pp. 175-185. doi:10.1007/BF00756471
[5] F. Bethuel, H. Brezis and F. Helein, “Ginzburg-Landau Vortices,” Birkhauser, Basel and Boston, 1994.
[6] W. X. Chen and C. M. Li, “An Integral System and the Lane-Emden Conjecture,” Discrete Continuous Dynamical Systems, Vol. 24, No. 4, 2009, pp. 1167-1184. doi:10.3934/dcds.2009.24.1167
[7] Y. Choquet-Bruhat, J. Isenberg and D. Pollack, “The Einstein-Scalar Field Constraints on Asymptotically Euclidean Manifolds,” Chinese Annals of Mathematics, Series B, Vol. 27, No. 1, 2006, pp. 31-52. doi:10.1007/s11401-005-0280-z
[8] Y. Choquet-Bruhat, J. Isenberg and D. Pollack, “The Constraint Equations for the Einstein-Scalar Field System on Compact Manifolds,” Classi-cal and Quantum Gravity, Vol. 24, No. 4, 2007, pp. 809-828. doi:10.1088/0264-9381/24/4/004
[9] Y. H. Du and L. Ma, “Logistic Equations on by a Squeezing Method Involving Boundary Blow-up Solutions,” Journal of London Mathemati-cal Society, Vol. 64, No. 2, 2001, pp. 107-124. doi:10.1017/S0024610701002289
[10] A. Farina. “Fi-nite-Energy Solutions, Quantization Effects and Liouville-Type Results for a Variant of the Ginzburg -Landau Systems in RK,” Comptes rendus de l'Académie des Sciences, Série 1, Mathé-matique, Vol. 325, No. 5, 1997, pp. 487-491
[11] E. Hebey, F. Pacard and D. Pollack, “A Variational Analysis of Ein-stein-Scalar Field Lichnerowicz Equations on Compact Rie-mannian Manifolds,” Communications in Mathematical Phys-ics, Vol. 278, No. 1, 2008, pp. 117-132. doi:10.1007/s00220-007-0377-1
[12] E. Hebey, “Existence, Stability and Instability for Einstein-Scalar Field Lichnerowicz Equations,” Two hours lectures, Institute for Advanced Study, Princeton, October 2008.
[13] J. Davila, “Global Regularity for a Singular Equation and Local Minimizers of a Nondiffer-entiable Functional,” Communications in Contemporary Mathematics, Vol. 6, No. 1, 2004, pp. 165-193. doi:10.1142/S0219199704001240
[14] F. H. Lin, “Static and Moving Vortices in Ginzburg-Landau Theories,” In: T. N. Knoxville, Ed., Nonlinear Partial Differential Equations in Geometry and Physics, Progress in Nonlinear Differential Equations and their Applications, Birkh?user, Basel, Vol. 29, 1997, pp. 71-111.
[15] F. H. Lin and J. C. Wei, “Traveling Wave Solutions of the Schrodinger Map Equation,” Communi-cations on Pure and Applied Mathematics, Vol. 63, No. 12, 2010, pp. 1585-1621. doi:10.1002/cpa.20338
[16] L. Ma, “Liouville Type Theorem and Uniform Bound for the Lichnerowicz Equation and the Ginzburg-Landau Equation,” Comptes Rendus Mathematique, Vol. 348, No. 17, 2010, pp. 993-996. doi:10.1016/j.crma.2010.07.031
[17] L. Ma, “Three Remarks on Mean Field Equations,” Pacific Journal of Mathematics, Vol. 242, No. 1, 2009, pp. 167-171. doi:10.2140/pjm.2009.242.167
[18] L. Ma and X. W. Xu, “Uniform Bound and a Non-Existence Result for Lichnerowicz Equation in the Whole N-Space,” Comptes Rendus Mathe-matique, Vol. 347, No. 13-14, 2009, pp. 805-808. doi:10.1016/j.crma.2009.04.017
[19] L. Modica, “Monotonic-ity of the Energy for Entire Solutions of Semilinear Elliptic Equations,” In: F. Colombini, A. Marino and L. Modica, Eds., Partial Differential Equations and the Calculus of Variations, Birkhauser, Boston, Vol. 2, 1989, pp. 843-850.
[20] E. Sandier and S. Serfaty., “Vortices in the Magnetic Ginzburg-Landau Model,” Birkhauser, Basel, 1997.
[21] P. Souplet, “The Proof of the Lane-Emden Conjecture in Four Space Dimensions,” Advances in Mathematics, Vol. 221, No. 5, 2009, pp. 1409-1427. doi:10.1016/j.aim.2009.02.014
[22] M. del Pino, etc., “Varia-tional Reduction for Ginzburg-Landau Vortices,” Journal of Functional Analysis, Vol. 239, No. 2, 2006, pp. 497-541. doi:10.1016/j.jfa.2006.07.006
[23] P. Polacik, P. Souplet and P. Quittner, “Singularity and Decay Estimates in Superlinear Problems via Liouville-Type Theorems, Part 1: Elliptic Equa-tions and Systems,” Duke Mathematical Journal, Vol. 139, No. 3, 2007, pp. 555-579. doi:10.1215/S0012-7094-07-13935-8
[24] J. Serrin, “Entire Solutions of Nonlinear Poisson Equations,” Proceedings of London Mathematical Society, Vol. s3-24, No. 2, 1972, pp. 343-366.
[25] Y. L. Xin, “Geometry of Harmonic Maps. Se-ries: Progress in Nonlinear Differential Equations and their Applications,” Birkhauser Boston, Inc., Boston, Vol. 23, 1996, pp. 241.