The Numerical Solution of the MRLW Equation Using the Multigrid Method

Show more

References

[1] Brandt, A. (1977) Multi-Level Adaptive Solution to Boundary-Value Problem. Mathematics of Computation, 31, 333-390.

http://dx.doi.org/10.1090/S0025-5718-1977-0431719-X

[2] Goldstein, C.I. (1989) Analysis and Application of Multigrid Preconditioners for Singularly Perturbed Boundary Value Problems. SIAM Journal on Numerical Analysis, 26, 1090-1123.

http://dx.doi.org/10.1137/0726061

[3] Dennis, J.C. (1984) Multigrid Method for Partial Differential Equations. Studies in numerical Analysis, 24.

[4] Hachbusch, W. (1984) Multigrid Methods and Applications. Springer, Berlin.

[5] Brandt, A. (1988) Multilevel Computations. Marcel Dekker, New York.

[6] Wesseling, P. (1992) An Introduction to Multigrid Methods. John Wiley & Sons, New York.

[7] Hassen, N.A., Osama, E.M. and Fatema, H.M. (1995) The Relaxation Schemes for the Two Dimensional Anisotropic Partial Differential Equations Using Multigrid Method. 20th INI Conf. for Stat., Comp. Sci., Scient. & Social Appl., 3-9 April 1995, Cairo.

[8] Abo Essa, Y.M., Amer, T.S. and Ibrahim, I.A. (2011) Numerical Treatment of the Generalized Regularized Long-Wave Equation. Far East Journal of Applied Mathematics, 52, 147-154.

[9] Abo Essa, Y.M., Amer, T.S. and Abdul-Moniem, I.B. (2012) Application of Multigrid Technique for the Numerical Solution of the Non-Linear Dispersive Waves Equations. International Journal of Mathematical Archive, 3, 4903-4910.

[10] Peregrine, D.H. (1966) Calculations of the Development of an Undular Bore. Journal of Fluid Mechanics, 25, 321-330.

http://dx.doi.org/10.1017/S0022112066001678

[11] Benjamin, T.B., Bona, J.L. and Mahony, J.L. (1972) Model Equations for Long Waves in Nonlinear Dispersive Systems. Philosophical Transactions of the Royal Society of London. Series A, 272, 47-78.

http://dx.doi.org/10.1098/rsta.1972.0032

[12] Gardner, L.R.T., Gardner, G.A., Ayub, F.A. and Amein, N.K. (1997) Approximations of Solitary Waves of the MRLW Equation by B-Spline Finite Element. Arabian Journal for Science and Engineering, 22, 183-193.

[13] Khalifa, A.K., Raslan, K.R. and Alzubaidi, H.M. (2008) A Collocation Method with Cubic B-Splines for Solving the MRLW Equation. Journal of Computational and Applied Mathematics, 212, 406-418.

http://dx.doi.org/10.1016/j.cam.2006.12.029

[14] Khalifa, A.K., Raslan, K.R. and Alzubaidi, H.M. (2007) A Finite Difference Scheme for the MRLW and Solitary Wave Interactions. Applied Mathematics and Computation, 189, 346-354.

http://dx.doi.org/10.1016/j.amc.2006.11.104

[15] Raslan, K.R. (2009) Numerical Study of the Modified Regularized Long Wave (MRLW) Equation. Chaos, Solitons and Fractals, 42, 1845-1853.

http://dx.doi.org/10.1016/j.chaos.2009.03.098

[16] Raslan, K.R. and Hassan, S.M. (2009) Solitary Waves of the MRLW Equation. Applied Mathematics Letters, 22, 984-989.

http://dx.doi.org/10.1016/j.aml.2009.01.020

[17] Ali, A. (2009) Mesh Free Collocation Method for Numerical Solution of Initial-Boundary Value Problems Using Radial Basis Functions. Ph.D. Thesis, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Khyber Pakhtunkhwa.

[18] Haq, F., Islam, S. and Tirmizi, I.A. (2010) A Numerical Technique for Solution of the MRLW Equation Using Quartic B-Splines. Applied Mathematical Modelling, 34, 4151-4160.

http://dx.doi.org/10.1016/j.apm.2010.04.012

[19] Battal Gazi Karakoc, S. and Geyikli, T. (2013) Petrov-Galerkin Finite Element Method for Solving the MRLW Equation. Mathematical Sciences, 7, 25.