References
[1] McElhaney, J.H. (1966) Dynamic Response of Bone and Muscle Tissue. Journal of Applied Physiology, 21, 1231-1236.
[2] Wood, J.L. (1971) Dynamic Response of Human Cranial Bone. Journal of Biomechanics, 4, 1-12.
http://dx.doi.org/10.1016/0021-9290(71)90010-8
[3] Iyo, T., Sasaki, N., Maki, Y. and Nakata, M. (2006) Mathematical Description of Stress Relaxation of Bovine Femoral Cortical Bone. Biorheology, 43, 117-132.
[4] Crowninshield, R.D. and Pope, M.H. (1974) The Response of Compact Bone in Tension at Various Strain Rates. Annals of Biomedical Engineering, 2, 217-225.
http://dx.doi.org/10.1007/BF02368492
[5] Currey, J.D. (1975) The Effects of Strain Rate, Reconstruction and Mineral Content on Some Mechanical Properties of Bovine Bone. Journal of Biomechanics, 8, 81-86.
http://dx.doi.org/10.1016/0021-9290(75)90046-9
[6] Carter, D.R., Caler, W.E., Spengler, D.M. and Frankel, V.H. (1981) Fatigue Behavior of Adult Cortical Bone: The Influence of Mean Strain and Strain Range. Acta Orthopaedica Scandinavica, 52, 481-490.
http://dx.doi.org/10.3109/17453678108992136
[7] Sedlin, E.D. (1965) A Rheologic Model for Cortical Bone. A Study of the Physical Properties of Human Femoral Samples. Acta Orthopaedica Scandinavica, 36, 1-77.
http://dx.doi.org/10.3109/ort.1965.36.suppl-83.01
[8] Perren, S.M., Huggler, A., Russenberger, M., Allgower, M., Mathys, R., Schenk, R., Willenegger, H. and Muller, M.E. (1969) The Reaction of Cortical Bone to Compression. Acta Orthopaedica Scandinavica, S125, 19-29.
[9] Reilly, D.T. and Burstein, A.H. (1974) Review Article. The Mechanical Properties of Cortical Bone. The Journal of bone and Joint Surgery, 56, 1001-1022.
[10] Reilly, D.T. and Burstein, A.H. (1975) The Elastic and Ultimate Properties of Compact Bone Tissue. Journal of Biomechanics, 8, 393-405.
http://dx.doi.org/10.1016/0021-9290(75)90075-5
[11] Johnson, T.P., Socrate, S. and Boyce, M.C. (2010) A Viscoelastic, Viscoplastic Model of Cortical Bone Valid at Low and High Strain Rates. Acta Biomaterialia, 6, 4073-4080.
http://dx.doi.org/10.1016/j.actbio.2010.04.017
[12] Garcia, D., Zysset, P.K., Charlebois, M. and Curnier, A. (2009) A Three-Dimensional Elastic Plastic Damage Constitutive Law for Bone Tissue. Biomechanics and Modeling in Mechanobiology, 8, 149-165.
http://dx.doi.org/10.1007/s10237-008-0125-2
[13] Mercer, C., He, M.Y., Wang, R. and Evans, A.G. (2006) Mechanisms Governing the Inelastic Deformation of Cortical Bone and Application to Trabecular Bone. Acta Biomaterialia, 2, 59-68.
http://dx.doi.org/10.1016/j.actbio.2005.08.004
[14] Shunmugasamy, V.C., Gupta, N. and Coelho, P.G. (2010) High Strain Rate Response of Rabbit Femur Bones. Journal of Biomechanics, 43, 3044-3050.
http://dx.doi.org/10.1016/j.jbiomech.2010.06.034
[15] Rho, J.Y., Kuhn-Spearing, L. and Zioupos, P. (1998) Mechanical Properties and the Hierarchical Structure of Bone. Medical Engineering & Physics, 20, 92-102.
http://dx.doi.org/10.1016/S1350-4533(98)00007-1
[16] Hamed, E., Novitskaya, E., Li, J., Chen, P.Y., Jasiuk, I. and McKittrick, J. (2012) Elastic Moduli of Untreated, Demineralized and Deproteinized Cortical Bone: Validation of a Theoretical Model of Bone as an Interpenetrating Composite Material. Acta Biomaterialia, 8, 1080-1092.
http://dx.doi.org/10.1016/j.actbio.2011.11.010
[17] Currey, J.D. (2004) Tensile Yield in Compact Bone Is Determined by Strain, Post-Yield Behaviour by Mineral Content. Journal of Biomechanics, 37, 549-556.
http://dx.doi.org/10.1016/j.jbiomech.2003.08.008
[18] Melnis, A.E. and Knets, I.V. (1982) Effect of the Rate of Deformation on the Mechanical Properties of Compact Bone Tissue. Mechanics of Composite Materials, 18, 358-363.
http://dx.doi.org/10.1007/BF00604319
[19] Pithioux, M., Subit, D. and Chabrand, P. (2004) Comparison of Compact Bone Failure under Two Different Loading Rates: Experimental and Modelling Approaches. Medical Engineering and Physics, 26, 647-653.
http://dx.doi.org/10.1016/j.medengphy.2004.05.002
[20] Hansen, U., Zioupos, P., Simpson, R., Currey, J.D. and Hynd, D. (2008) The Effect of Strain Rate on the Mechanical Properties of Human Cortical Bone. Journal of Biomechanical Engineering, 130, 011011-011018.
http://dx.doi.org/10.1115/1.2838032
[21] Wright, T.M. and Hayes, W.C. (1976) Tensile Testing of Bone over a Wide Range of Strain Rates: Effects of Strain Rate, Microstructure and Density. Medical & Biological Engineering, 14, 671-680.
http://dx.doi.org/10.1007/BF02477046
[22] Currey, J.D. (1988) Strain Rate and Mineral Content in Fracture Models of Bone. Journal of Orthopaedic Research, 6, 32-38.
http://dx.doi.org/10.1002/jor.1100060105
[23] Currey, J.D. (1988) The Effect of Porosity and Mineral Content on the Young’s Modulus of Elasticity of Compact Bone. Journal of Biomechanics, 21, 131-139.
http://dx.doi.org/10.1016/0021-9290(88)90006-1
[24] McCalden, R.W., McGeough, J.A., Barker, M.B. and Court-Brown, C.M. (1993) Age-Related Changes in the Tensile Properties of Cortical Bone. The Relative Importance of Changes in Porosity, Mineralization, and Microstructure. The Journal of Bone and Joint Surgery, American Volume, 75, 1193-1205.
[25] Zioupos, P., Hansen, U. and Currey, J.D. (2008) Microcracking Damage and the Fracture Process in Relation to Strain Rate in Human Cortical Bone Tensile Failure. Journal of Biomechanics, 41, 2932-2939.
http://dx.doi.org/10.1016/j.jbiomech.2008.07.025
[26] Iyo, T., Maki, Y., Sasaki, N. and Nakata, M. (2004) Anisotropic Viscoelastic Properties of Cortical Bone. Journal of Biomechanics, 37, 1433-1437.
http://dx.doi.org/10.1016/j.jbiomech.2003.12.023
[27] Melnis, A.E., Knets, I.V. and Moorlat, P.A. (1979) Deformation Behavior of Human Compact Bone Tissue upon Creep under Tensile Testing. Mechanics of Composite Materials, 15, 574-579.
http://dx.doi.org/10.1007/BF00605581
[28] Melnis, A.E. and Knets, I.V. (1982) Age-Related Changes in the Tensile Creep Properties of Human Compact Bone Tissue. Mechanics of Composite Materials, 17, 495-501.
http://dx.doi.org/10.1007/BF00605920
[29] Knet-s, I.V. and Vilks, Y.K. (1975) Creep of Compact Human Bony Tissue under Tension. Polymer Mechanics, 11, 543-547.
http://dx.doi.org/10.1007/BF00856779
[30] Fondrk, M., Bahniuk, E., Davy, D.T. and Michaels, C. (1988) Some Viscoplastic Characteristics of Bovine and Human Cortical Bone. Journal of Biomechanics, 21, 623-630.
http://dx.doi.org/10.1016/0021-9290(88)90200-X
[31] Blumlein, H., Cordey, J., Schneider, U.A., Rahn, B.A. and Perren, S.M. (1977) Long-Term Measurements of Axial Force of Screws in Vivo for Osteosynthesis-Langzeitmessung der Axialkraft von Knochenschrauben in Vivo. Zeitschrift Fur Orthopadie Und Ihre Grenzgebiete, 115, 603-604.
[32] Cordey, J., Blumlein, H., Ziegler, W. and Perren, S.M. (1976) Study of the Behavior in the Course of Time of the Holding Power of Cortical Screws in Vivo. Acta Orthopaedica Belgica, 42, 75-87.
[33] Roberts, W.E., Turley, P.K., Brezniak, N. and Fielder, P.J. (1987) Implants: Bone Physiology and Metabolism. CDA Journal California Dental Association, 15, 54-61.
[34] Perzyna, P. (1966) Fundamental Problems in Viscoplasticity. Advances in Applied Mechanics, 9, 243-377.
[35] Perzyna, P. (1971) Thermodynamic Theory of Viscoplasticity. Advances in Applied Mechanics, 11, 313-354.
[36] Ottosen, N.S. and Ristinmaa, M. (2005) The Mechanics of Constitutive Modeling. Elsevier, Amsterdam.
[37] Norton, F.H. (1929) The Creep of Steel at High Temperatures. McGraw-Hill Book Company, New York.
[38] Garcia, D. (2006) Elastic Plastic Damage Laws for Cortical Bone. Ph.D. Dissertation, Thèse No. 3435, Ecole Polytechnique Federale De Lausanne, Lusanne.
[39] Melnis, A.E., Kregers, A.F. and Villerush, K.K. (1982) An Evaluation of Some Factors Affecting the Creep Properties of Human Compact Bone Tissue. Mechanics of Composite Materials, 17, 711-715.
http://dx.doi.org/10.1007/BF00605058
[40] Halldin, A., Jimbo, R., Johansson, C.B., Wennerberg, A., Jacobsson, M., Albrektsson, T. and Hansson, S. (2011) The Effect of Static Bone Strain on Implant Stability and Bone Remodeling. Bone, 49, 783-789.
http://dx.doi.org/10.1016/j.bone.2011.07.003
[41] Halldin, A., Jimbo, R., Johansson, C.B., Wennerberg, A., Jacobsson, M., Albrektsson, T. and Hansson, S. (2014) Implant Stability and Bone Remodeling after 3 and 13 Days of Implantation with an Initial Static Strain. Clinical Implant Dentistry and Related Research, 16, 383-393.
http://dx.doi.org/10.1111/cid.12000