[1] Swallen, J. (1965) The Grass Genus Luziola. Annals of the Missouri Botanical Garden, 52, 472-475.
http://dx.doi.org/10.2307/2394812
[2] Pohl, W. and Davidse, G. (1971) Numbers of Costa Rican Grasses. Brittonia, 23, 293-324.
http://dx.doi.org/10.2307/2805632
[3] Vaughan, D., Morishima, H. and Kadowaki, K. (2003) Diversity in the Oryza Genus. Plant Biology, 6, 139-146.
[4] Sanabria, Y. (2006) Caracterización Morfológica, Citogenética y Molecular de una Accesión del Género Oryza y Evaluación de Introgresiones en Progenies F1, BC2 y BC3 Originadas de Cruces con Oryza sativa L. Tesis de Pregrado, Universidad del Tolima, Facultad de Ciencias Básicas, 90 p.
[5] Ohmido, N., Fukui, K. and Kinoshita, T. (2005) Advances in Rice Chromosomes Research. Proceedings Japan Academy, 81B, 382-392. http://dx.doi.org/10.2183/pjab.81.382
[6] Harrison, J., Alvey, E. and Henderson, L. (2010) Meiosis in Flowering Plants and Other Green Organisms. Journal of Experimental Botany, 61, 2863-2875. http://dx.doi.org/10.1093/jxb/erq191
[7] Pawlowski, W. (2010) Chromosome Organization and Dynamics in Plants. Plant Biology, 1, 640-645.
[8] Fu, X., Lu, Y., Liu, X., Li, J. and Feng, J. (2007) Cytological Mechanisms of Interspecific Incrossability and Hybrid Sterility between Oryza sativa L. and O. alta Swallen. Chinese Science Bulletin, 52, 755-765.
http://dx.doi.org/10.1007/s11434-007-0138-8
[9] Abbasi, F., Ahmad, H., Perveen, F., Inamullah, M., Sajid, M. and Brar, D. (2010) Assessment of Genomic Relationship between Oryza sativa and Oryza australinesis. African Journal of Biotechnology, 9, 1312-1316.
[10] Mendes, A., Pagliarini, M. and Borges, C. (2007) Meiotic Arrest Compromises Pollen Fertility in Aninterspecific Hybrid between Brachiaria ruziziensis × Brachiaria decumbens (Poaceae: Paniceae). Brazilian Archives of Biology and Technology, 50, 831-837.
[11] Cifuentes, M. (2007) Formación de polen no reducido en híbridos Trigo × Aegilops. Tesis Doctoral, Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros Agrónomos, 149 p.
[12] Kalinka, A., Achrem, M. and Rogalska, S. (2010) Cytomixis-Like Chromosomes/Chromatin Elimination from Pollen Mother Cells (PMCs) in Wheat-Rye Allopolyploids. Nucleus, 53, 69-83. http://dx.doi.org/10.1007/s13237-010-0002-0
[13] Chaudhary, H., Tayeng, T., Kaila, V. and Rather, S. (2013) Enhancing the Efficiency of Wide Hybridization Mediated Chromosome Engineering for High Precision Crop Improvement with Special Reference to Wheat × Imperata cylindrica System. Nucleus, 56, 7-14. http://dx.doi.org/10.1007/s13237-013-0077-5
[14] Xie, Q., Kang, H., Sparkes, D., Tao, S., Fan, X., Xu, L., Fan, X., Sha, L., Zhang, H., Wang, Y., Zeng, J. and Zhou, Y. (2013) Mitotic and Meiotic Behavior of Rye Chromosomes in Wheat—Psathyrostachys huashanica Amphiploid × Triticale Progeny. Genetics and Molecular Research, 12, 2537-2548. http://dx.doi.org/10.4238/2013.January.4.16
[15] Ishii, T., Ueda, T., Tanaka, H. and Tsujimoto, H. (2010) Chromosome Elimination by Wide Hybridization between Triticeae or Oat Plant and Pearl Millet: Pearl Millet Chromosome Dynamics in Hybrid Embryo Cells. Chromosome Research, 18, 821-831. http://dx.doi.org/10.1007/s10577-010-9158-3
[16] Houben, A., Sanei, M. and Pickering, R. (2011) Barley Doubled-Haploid Production by Uniparental Chromosome Elimination. Plant Cell, Tissue and Organ Culture, 104, 321-327. http://dx.doi.org/10.1007/s11240-010-9856-8
[17] Ge, X., Ding, L. and Li, Z. (2013) Nucleolar Dominance and Different Genome Behaviors in Hybrids and Allopolyploids. Plant Cell Reports, 32, 1661-1673. http://dx.doi.org/10.1007/s00299-013-1475-5