Back
 ARS  Vol.3 No.4 , December 2014
Simple Relationship Analysis between L-Band Backscattering Intensity and the Stand Characteristics of Sugi (Cryptomeria japonica) and Hinoki (Chamaecyparis obtusa) Trees
Abstract: In this study, we have performed an analysis between the L-band backscattering intensity derived from the slope corrected ALOS PALSAR remote sensing data and the in-situ stand biophysical parameter of Sugi (Cryptomeria japonica) and Hinoki (Chamaecyparis obtusa) trees at the forests of Chiba Prefecture, Japan. Diameter at breast height (DBH), tree height, and stem volume were statistically compared with the slope corrected sigma naught backscattering in an empirical approach. It was found that the relationship between the backscattering and the stand characteristics was strongly dependent on species showing different trends between the Sugi and Hinoki trees. The Hinoki trees showed an increasing backscattering with increasing parameters (higher DBH, higher Tree height and higher stem volume), as it was mentioned on various researches, while the Sugi tree showed and decreasing backscattering with increasing parameters. We have also found for the Sugi trees that the backscattering is affected strongly by the number of stems. We have assumed that this is because of the characteristics of the Sugi trees which have high moisture content in the heartwood of the stem, compared with other tree species in Japan. The results pave the way to the possibility for estimating biophysical parameters within the forests of Japan by considering such trends and at highly rugged areas by using slope corrected imagery of the SAR data.
Cite this paper: Iizuka, K. and Tateishi, R. (2014) Simple Relationship Analysis between L-Band Backscattering Intensity and the Stand Characteristics of Sugi (Cryptomeria japonica) and Hinoki (Chamaecyparis obtusa) Trees. Advances in Remote Sensing, 3, 219-234. doi: 10.4236/ars.2014.34015.
References

[1]   Castel, T., Beaudoin, A., Stach, N., Stussi, N., Le Toan, T. and Durand, P. (2001) Sensitivity of Space-Borne SAR Data to Forest Parameters over Sloping Terrain. Theory and Experiment. International Journal of Remote Sensing, 22, 2351-2376. http://dx.doi.org/10.1080/01431160121407

[2]   Dobson, M.C., Ulaby, F.T., Le Toan, T., Beaudoin, A., Kasischke, E.S. and Christensen, N. (1992) Dependence of Radar Backscatter on Coniferous Forest Biomass. IEEE Transactions on Geoscience and Remote Sensing, 30, 412-415. http://dx.doi.org/10.1109/36.134090

[3]   Fransson, J.E.S. and Israelsson, H. (1999) Estimation of Stem Volume in Boreal Forests Using ERS-1 Cand JERS-1 L-Band SAR Data. International Journal of Remote Sensing, 20, 123-137.
http://dx.doi.org/10.1080/014311699213640

[4]   Harrell, P., Kasischke, E.S., Bourgeau-Chavez, L.L., Haney, E. and Christensen, N.L. (1997) Evaluation of Approaches to Estimating Aboveground Biomass in Southern Pine Forests Using SIR-C Data. Remote Sensing of Environment, 59, 223-233. http://dx.doi.org/10.1016/S0034-4257(96)00155-1

[5]   Hyyppa, J.M., Hyyppa, H.J., Inkinen, M. and Engdahl, M.E. (2000) Accuracy Comparison of Various Remote Sensing Data Sources in the Retrieval of Forest Stand Attributes. Forest Ecology and Management, 128, 109-120. http://dx.doi.org/10.1016/S0378-1127(99)00278-9

[6]   Saatchi, S.S. and Moghaddam, M. (2000) Estimation of Crown and Stem Water Content and Biomass of Boreal Forest Using Polarimetric SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing, 38, 697-709. http://dx.doi.org/10.1109/36.841999

[7]   Sandberg, G., Ulander, L.M.H., Fransson, J.E.S., Holmgren, J. and Le Toan, T. (2011) Land P-Band Backscatter Intensity for Biomass Retrieval in Hemiboreal Forest. Remote Sensing of Environment, 115, 2874-2886. http://dx.doi.org/10.1016/j.rse.2010.03.018

[8]   Hamdan, O., Aziz, H.K. and Rahman, K.A. (2011) Remotely Sensed L-Band SAR Data for Tropical Forest Biomass Estimation. Journal of Tropical Forest Science, 23, 318-327.

[9]   Kobayashi, S., Widyorini, R., Kawai, S., Omura, Y., Sanga-Ngoie, K. and Supriadi, B. (2012) Backscattering Characteristics of L-Band Polarimetric and Optical Satellite Imagery over Planted Acacia Forests in Sumatra, Indonesia. Journal of Applied Remote Sensing, 6, 063519-063525.

[10]   Lucas, R.M., Armston, J., Fairfax, R., Fensham, R., Accad, A., Carreiras, J., Kelley, J., Bunting, P., Clewley, D., Bray, S., Metcalfe, D., Dwyer, J., Bowen, M., Eyre, T., Laidlaw, M. and Shimada, M. (2010) An Evaluation of the ALOS PALSAR L-Band Backscatter—Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3, 576-593.

[11]   Luckman, A., Baker, J., Honzak, M. and Lucas, R. (1998) Tropical Forest Biomass Density Estimation Using JERS-1 SAR: Seasonal Variation, Confidence Limits, and Application to Image Mosaics. Remote Sensing of Environment, 63, 126-139. http://dx.doi.org/10.1016/S0034-4257(97)00133-8

[12]   Wijaya, A. (2009) Evaluation of ALOS-PALSAR Mosaic Data for Estimating Stem Volume and Biomass: A Case Study from Tropical Rainforest of Central Indonesia. Jurnal Geografi, 2, 14-21.

[13]   Richards, J.A. (2009) Remote Sensing with Imaging Radar. Springer, New York.
http://dx.doi.org/10.1007/978-3-642-02020-9

[14]   Small, D. (2011) Flattening Gamma: Radiometric Terrain Correction for SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing, 49, 3081-3093.
http://dx.doi.org/10.1109/TGRS.2011.2120616

[15]   Chen, E., Li, Z.Y., Ling, F.L., Lu, Y., He, Q.S. and Fan, F.Y. (2009) Forest Volume Density Estimation Capability of ALOS PALSAR Data over Hilly Region. Proceedings of 4th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry—PolInSAR 2009, Frascati, 26-30 January 2009.

[16]   Balzter, H., Baker, J., Hallikainen, M. T. and Tomppo, E. (2002) Retrieval of Timber Volume and Snow Water Equivalent over a Finnish Boreal Forest from Airborne Polarimetric Synthetic Aperture Radar. International Journal of Remote Sensing, 23, 3185-3208.
http://dx.doi.org/10.1080/01431160110076199

[17]   Hoekman, D. and Quinones, M. J. (2000) Land Cover Type and Biomass Classification Using AirSAR Data for Evaluation of Monitoring Scenarios in the Colombian Amazon. IEEE Transactions on Geoscience and Remote Sensing, 38, 685-696. http://dx.doi.org/10.1109/36.841998

[18]   Kellndorfer, J.M., Dobson, M.C., Vona, J.D. and Clutter, M. (2003) Toward Precision Forestry: Plot-Level Parameter Retrieval for Slash Pine Plantations with JPL AIRSAR. IEEE Transactions on Geoscience and Remote Sensing, 41, 1571-1582. http://dx.doi.org/10.1109/TGRS.2003.813529

[19]   Le Toan, T., Beaudoin, A., Riom, J. and Guyon, D. (1992) Relating Forest Biomass to SAR Data. IEEE Transactions on Geoscience and Remote Sensing, 30, 403-411. http://dx.doi.org/10.1109/36.134089

[20]   Ranson, K.J. and Sun, G. (1994) Mapping Biomass of a Northern Forest Using Multifrequency SAR Data. IEEE Transactions on Geoscience and Remote Sensing, 32, 388-396.
http://dx.doi.org/10.1109/36.295053

[21]   Ranson, K.J. and Sun, G. (2000) Effects of Environmental Conditions on Boreal Forest Classification and Biomass Estimates with SAR. IEEE Transactions on Geoscience and Remote Sensing, 38, 1242-1252. http://dx.doi.org/10.1109/36.843016

[22]   Suzuki, R., Kim, Y. and Ishii, R. (2013) Sensitivity of the Backscatter Intensity of ALOS PASLAR to the Above-Ground Biomass and Other Biophysical Parameters of Boreal Forest in Alaska. Polar Science, 7, 100-112. http://dx.doi.org/10.1016/j.polar.2013.03.001

[23]   Motohka, T., Shimada, M., ISoguchi, O., Ishihara, M.I. and Suzuki, S.N. (2011) Relationships between PALSAR Backscattering Data and Forest Above Ground Biomass in Japan. Proceedings of IEEE International Geoscience and Remote Sensing Symposium 2011, Vancouver, 24-29 July 2011, 3518-3521.

[24]   Santoro, M., Fransson, J.E.S., Eriksson, L.E.B., Magnusson, M., Ulander, L.M.H. and Olsson, H. (2009) Signatures of ALOS PALSAR L-Band Backscatter in Swedish Forest. IEEE Transactions on Geoscience and Remote Sensing, 47, 4001-4019. http://dx.doi.org/10.1109/TGRS.2009.2023906

[25]   Leblon, B., Kasischke, E.S., Alexander, M.E., Doyle, M. and Abbott, M. (2002) Fire Danger Monitoring Using ERS-1 SAR Images in the Case of Northern Boreal Forests. Natural Hazards, 27, 231-255. http://dx.doi.org/10.1023/A:1020375721520

[26]   Dobson, M.C., Pierce, L., Sarabandi, K., Ulaby, F.T. and Sharik, T. (1992) Preliminary Analysis of ERS-1 SAR for Forest Ecosystem Studies. IEEE Transactions on Geoscience and Remote Sensing, 30, 203-211. http://dx.doi.org/10.1109/36.134071

[27]   Dobson, M.C., Ulaby, F.T. and Pierce, L.E. (1995) Land-Cover Classification and Estimation of Terrain Attributes Using Synthetic Aperture Radar. Remote Sensing of Environment, 51, 199-214.
http://dx.doi.org/10.1016/0034-4257(94)00075-X

[28]   Leckie, D.G. (1990) Advanced in Remote Sensing Technologies for Forest Surveys and Management. Canadian Journal of Forest Research, 20, 464-483. http://dx.doi.org/10.1139/x90-063

[29]   Harrell, P.A., Bourgeau-Chavez, L.L., Kasischke, E.S., French, N.H.F. and Christensen Jr., N.L. (1995) Sensitivity of ERS-1 and JERS-1 Radar Data to Biomass and Stand Structure in Alaskan Boreal Forest. Remote Sensing of Environment, 54, 247-260. http://dx.doi.org/10.1016/0034-4257(95)00127-1

[30]   Kasischke, E.S., Christensen Jr., N.L. and Bourgeau-Chavez, L.L. (1995) Correlating Radar Backscatter with Components of Biomass in Loblolly Pine Forests. IEEE Transactions on Geoscience and Remote Sensing, 33, 643-659. http://dx.doi.org/10.1109/36.387580

[31]   Pulliainen, J.Y., Mikkela, P.J., Hallikainen, M.T. and Ikonen, J.P. (1996) Seasonal Dynamics of C-Band Backscatter of Boreal Forests with Applications to Biomass and Soil Moisture Estimation. IEEE Transactions on Geoscience and Remote Sensing, 34, 758-770. http://dx.doi.org/10.1109/36.499781

[32]   Shi, J.C., Wang, J., Hsu, A.Y., O'Neill, P.E. and Engmann, T. (1997) Estimation of Bare Surface Soil Moisture and Surface Roughness Parameter Using L-Band SAR Image Data. IEEE Transactions on Geoscience and Remote Sensing, 35, 1254-1266. http://dx.doi.org/10.1109/36.628792

[33]   Abbott, K.N., Leblon, B., Staples, G.C., Maclean, D.A. and Alexander, M.E. (2007) Fire Danger Monitoring Using RADARSAT-1 over Northern Boreal Forests. International Journal of Remote Sensing, 28, 1317-1338. http://dx.doi.org/10.1080/01431160600904956

[34]   French, N.H.F., Kasischke, E.S., Bourgeau-Chavez, L.L. and Harrell, P.A. (1996) Sensitivity of ERS-1 SAR to Variations in Soil Water in Fire-Disturbed Boreal Forest Ecosystems. International Journal of Remote Sensing, 17, 3037-3053. http://dx.doi.org/10.1080/01431169608949126

[35]   Hess, L.L., Melack, J.M. and Simonett, D.S. (1990) Radar Detection of Flooding Beneath the Forest Canopy: A Review. International Journal of Remote Sensing, 11, 1313-1325.
http://dx.doi.org/10.1080/01431169008955095

[36]   Kasischke, E.S. and Bourgeau-Chavez, L. (1997) Monitoring South Florida Wetlands Using ERS-1 SAR Imagery. Photogrammetric Engineering and Remote Sensing, 63, 281-291.

[37]   DiMiceli, C.M., Carroll, M.L., Sohlberg, R.A., Huang, C., Hansen, M.C. and Townshend, J.R.G. (2011) Annual Global Automated MODIS Vegetation Continuous Fields (MOD44B) at 250 m Spatial Resolution for Data Years Beginning Day 65, 2000-2010, Collection 5 Percent Tree Cover. University of Maryland, College Park.

[38]   Japan Aerospace Exploration Agency (2009) PALSAR Calibration Factor Updated.
http://www.eorc.jaxa.jp/en/about/distribution/info/alos/20090109en_3.html

[39]   Brolly, M. and Woodhouse, I.H. (2012) A “Matchstick Model” of Microwave Backscatter from a Forest. Ecological Modelling, 237-238, 74-87. http://dx.doi.org/10.1016/j.ecolmodel.2012.04.014

[40]   Ulaby, F.T., Sarabandi, K., McDonald, K., Whitt, M. and Dobson, C. (1990) Michigan Microwave Canopy Scattering Model. International Journal of Remote Sensing, 11, 1223-1253.
http://dx.doi.org/10.1080/01431169008955090

[41]   Fernandez-Ordonez, Y., Soria-Ruiz, J. and Leblon, B. (2008) Forest Inventory Using Optical and Radar Remote Sensing. In: Jedlovec, G., Ed., Advances in Geoscience and Remote Sensing, InTech, Rijeka. http://dx.doi.org/10.5772/8330

[42]   Iizuka, K. and Tateishi, R. (2013) Analysis of Backscatterng Characteristics of L-Band SAR over the Mountainous Region of Chiba Japan, Using 50 m PALSAR Mosaic Product. Proceedings of International Symposium on Remote Sensing, Chiba, 15-17 May 2013, 385-388.

[43]   Cartus, O., Santoro, M. and Kellndorfer, J. (2012) Mapping Forest Aboveground Biomass in the Northeastern United States with ALOS PALSAR Dual-Polarization L-Band. Remote Sensing of Environment, 124, 466-478. http://dx.doi.org/10.1016/j.rse.2012.05.029

[44]   Santoro, M., Beer, C., Cartus, O., Schmullius, C., Shvidenko, A., McCallum, I., Wegmüller, U. and Wiesmann, A. (2011) Retrieval of Growing Stock Volume in Boreal Forest Using Hyper-Temporal Series of Envisat ASAR ScanSAR Backscatter Measurements. Remote Sensing of Environment, 115, 490-507. http://dx.doi.org/10.1016/j.rse.2010.09.018

[45]   Minato, K., Ujiie, M. and Hishinuma, Y. (1989) Growth and Wood Quality of Sugi and Hinoki Trees in the Plantatins of the Wakayama Experiment Forest. Research Bulletins of the College Experiment Forests, 46, 223-247.

[46]   Umebayashi, T., Koga, S., Utsumi, Y., Inoue, S., Shiiba, Y., Nagasawa, H., Osaki, S., Kubota, K., Inoue, S., Junji, M. and Oda, K. (2011) Green Moisture Content and Basic Density of 95 Woody Species Growing in Kyushu University Forests, Japan. Bulletin of the Kyushu University Forests, 92, 33-44.

[47]   Tsushima, S., Fujioka, Y., Oda, K., Matsumura, J. and Shiraishi, S. (2006) Variations of Wood Properties in Forests of Seedlings and Cutting Cultivars of Hinoki (Chamaecyparis obtusa). Mokuzai Gakkaishi, 52, 277-284. http://dx.doi.org/10.2488/jwrs.52.277

[48]   Kawazumi, K., Oda, K. and Tsutsumi, J. (1991) Heartwood Moisture Content of Sugi (Cryptomeria japonica) Cultivars Grown in a Given Stand. Science Bulletin of the Faculty of Agriculture, Kyushu University, 1-2, 79-84.

[49]   Uyemura, T. (1960) Dielectrical Properties of Woods as the Indicator of the Moisture. Bulletin of the Forestry and Forest Products Research Institute, 119, 95-172.

[50]   Kobayashi, S., Omura, Y., Sanga-Ngoie, K., Widyorini, R., Kawai, S., Supriadi, B. and Yamaguchi, Y. (2012) Characteristics of Decomposition Powers of L-Band Multi-Polarimetric SAR in Assessing Tree Growth of Industrial Plantation Forests in the Tropics. Remote Sensing, 4, 3058-3077.
http://dx.doi.org/10.3390/rs4103058

[51]   Shimada, M. (2010) Ortho-Rectification and Slope Correction of SAR Data Using DEM and Its Accuracy Evaluation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3, 657-671. http://dx.doi.org/10.1109/JSTARS.2010.2072984

[52]   Ulander, L.M.H. (1996) Radiometric Slope Correction of Synthetic-Aperture Radar Images. IEEE Transactions on Geoscience and Remote Sensing, 34, 1115-1122.
http://dx.doi.org/10.1109/36.536527

[53]   Imhoff, M.L. (1995) Radar Backscatter and Biomass Saturation: Ramifications for Global Biomass Inventory. IEEE Transactions on Geoscience and Remote Sensing, 33, 511-518.
http://dx.doi.org/10.1109/36.377953

 
 
Top