WJCMP  Vol.4 No.4 , November 2014
Large Room Temperature Magneto-Resistance in Magnetically Disordered Fe1.5Ti0.5O3-δ Thin Films
Abstract: Electronic transport properties of magnetically disordered R(-3)c phase Fe1.5Ti0.5O3-δ thin films epitaxially grown on Al2O3(0001) substrates have been studied. The measured magnetization in configurations with the magnetic field perpendicular and parallel to the film plane shows weak values of 0.1μB/formula compared to the theoretical value of 2μB/formula and a strong anisotropy with no saturation in perpendicular configuration. These properties are associated with the ato- mic scale disorder of Ti/Fe ions along c-axis. At zero-magnetic field and within the temperature range of 80 K to 400 K, the conduction mechanism appears to be Efros-Shklovskii variable range hopping with a carrier localization length of ξ0= 0.86nm. Magneto-resistance (MR) is positive in perpendicular configuration, while it is negative in parallel configuration, with significant values of MR = 27%- 37% at room temperature at 9 Tesla. Electron localization lengths were deduced from experiment for different external magnetic fields. The origin of magneto-resistance observed in experiment, is discussed.
Cite this paper: Chikoidze, E. , Dumont, Y. , Popova, E. , Keller, N. , Shumilin, A. , Kozub, V. and Warot-Fonrose, B. (2014) Large Room Temperature Magneto-Resistance in Magnetically Disordered Fe1.5Ti0.5O3-δ Thin Films. World Journal of Condensed Matter Physics, 4, 250-261. doi: 10.4236/wjcmp.2014.44028.

[1]   Ishikawa, Y. (1958) Electrical Properties of the FeTiO3-Fe2O3 Solid Solution SERIES. Journal of the Physical Society of Japan, 13, 37-42.

[2]   Ishikawa, Y. and Akimoto, S. (1957) Magnetic Properties of the FeTiO3-Fe2O3 Solid Solution Series. Journal of the Physical Society of Japan, 12, 1083-1098.

[3]   Butler, W.H., Bandyopadhyay, A. and Srinivasan, A. (2002) Electronic and Magnetic Structure of a 1000 K Magnetic Semiconductor: α-Hematite (Ti). Journal of Applied Physics, 93, 7882.

[4]   Hojo, H., Fujita, K., Tanaka, K. and Hirao, K. (2006) Epitaxial Growth of Room-Temperature Ferrimagnetic Semiconductor Thin Films Based on the Ilmenite-Hematite Solid Solution. Applied Physics Letters, 89, Article ID: 082509.

[5]   Hojo, H., Fujita, K., Tanaka, K. and Hirao, K. (2006) Room-Temperature Ferrimagnetic Semiconductor 0.6FeTiO3·0.4Fe2O3 Solid Solution Thin Films. Applied Physics Letters, 89, Article ID: 142503.

[6]   Takada, Y., Nakanishi, M., Fujii, T. and Takada, J. (2007) Preparation and Characterization of Ilmenite-Hematite Thin Films. Journal of Magnetism and Magnetic Materials, 310, 2108-2110.

[7]   Matoba, T., Fujita, K., Murai, SH. and Tanaka, K. (2010) Low-Temperature Growth of Highly Crystallized FeTiO3Fe2O3 Solid Solution Thin Films with Smooth Surface Morphology. Journal of Physics: Conference Series, 200, Article ID: 062011.

[8]   Popova, E., Warot-Fonrose, B., Ndilimabaka, H., Bibes, M., Keller, N., Berini, B., Bouzehouane, K. and Dumont, Y. (2008) Systematic Investigation of the Growth and Structural Properties of FeTiO3±δ Epitaxial Thin Films. Journal of Applied Physics, 103, Article ID: 093909.

[9]   Hamie, A., Dumont, Y., Popova, E., Scola, J., Fouchet, A., Berini, B. and Keller, N. (2010) Structural, Optical, and Magnetic Properties of the Ferromagnetic Semiconductor Hematite-Ilmenite Fe2-xTixO3-δ Thin Films on SrTiO3(001) Prepared by Pulsed Laser Deposition. Journal of Applied Physics, 108, Article ID: 093710.

[10]   Hamie, A., Popova, E., Dumont, Y., Chikoidze, E., Warot-Fonrose, B., Berini, B. and Keller, N. (2011) Epitaxial Growth of the High Temperature Ferromagnetic Semiconductor Fe1.5Ti0.5O3 on Silicon-Compatible Substrate. Applied Physics Letters, 98, Article ID: 232501.

[11]   Rode, K., Gunning, R.D., Sofin, R.G.S., Venkatesan, M., Lunney, J.G., Coey, J.M.D. and Shvets, I.V. (2008) Magnetic Anisotropy in Ilmenite-Hematite Solid Solution Thin Films Grown by Pulsed Laser Deposition. Journal of Magnetism and Magnetic Materials, 320, 3238-3241.

[12]   Kato, H., Yamada, M., Yamauchi, H., Hiroyoshi, H., Takei, H. and Watanabe, H. (1982) Metamagnetic Phase Transitions in FeTiO3. Journal of the Physical Society of Japan, 51, 1769-1777.

[13]   Popova, E., Ndilimabaka, H., Warot-Fonrose, B., Bibes, M., Keller, N., Berini, B., Jomard, F., Bouzehouane, K. and Dumont, Y. (2008) Growth of the Magnetic Semiconductor Fe2-xTixO3±δ Thin Films by Pulsed Laser Deposition. Applied Physics A, 93, 669.

[14]   Bocher, L., Popova, E., Nolan, M., Gloter, A., Chikoidze, E., March, K., Warot-Fonrose, B., Berini, B., Stéphan, O., Keller, N. and Dumont, Y. (2013) Direct Evidence of Fe2+/Fe3+ Charge Ordering in the Ferrimagnetic Hematite-Ilmenite Fe1.35Ti0.65 O3-δ Thin Films. Physical Review Letters, 111, Article ID: 167202.

[15]   Ndilimabaka, H., Dumont, Y., Popova, E., Desfonds, P., Jomard, F., Keller, N., Basletic, M., Bouzehouane, K., Bibes, M. and Godlewski, M. (2008) Magnetic and Transport Properties of the Room-Temperature Ferromagnetic Semiconductor Fe1.5Ti0.5O3±δ: Influence of Oxygen Stoichiometry. Journal of Applied Physics, 103, Article ID: 07D137.

[16]   Dai, Z., Naramoto, N., Narumi, K., Yamamoto, S. and Miyashita, A. (1999) Structural, Optical, and Electrical Properties of Laser Deposited FeTiO3 Films on Cand A-Cut Sapphire Substrates. Journal of Applied Physics, 85, 7433.

[17]   Zhou, F., Kotru, S. and Pandey, R.K. (2002) Pulsed Laser-Deposited Ilmenite-Hematite Films for Application in High-Temperature Electronics. Thin Solid Films, 408, 33-36.

[18]   Wang, Z.J, Wang, W.D., Tang, J.K., Tung, L.D., Spinu, L. and Zhou, W. (2003) Extraordinary Hall Effect and Ferromagnetism in Fe-Doped Reduced Rutile. Applied Physics Letters, 83, 518-520.

[19]   Bottger, H. and Bryksin, V.V. (1985) Hopping Conduction in Solids. Akad-Verlag, Berlin, 176.

[20]   Morin, F.J. (1954) Electrical Properties of α-Fe2O3. Physical Review, 93, 1195-1199.

[21]   Mott, N.F. and Davis, E.A. (1979) Electronic Properties of Noncrystalline Materials. Claredon Press, Oxford, 590.

[22]   Efros, A. (1976) Coulomb Gap in Disordered Systems. Journal of Physics C, 9, 2021.

[23]   Efros, A. and Sklovskii, B. (1975) Coulomb Gap and Low Temperature Conductivity of Disordered Systems. Journal of Physics C, 8, L49.

[24]   Hill, R.M. (1976) On the Observation of Variable Range Hopping. Physica Status Solidi (A), 35, K29-K34.

[25]   Iwauchi, K., Kiyama, M. and Nakamura, T. (1991) Dielectric Properties of FeTiO3. Physica Status Solidi (A), 127, 567-572.

[26]   Shannon, R.D., Oswald, R.A., Allik, T.H., Damen, J.P.M., Mateika, D. and Wechsler, B.A. (1991) Dielectric Constants of YVO4, Fe-, Ge-, and V-Containing Garnets, the Polarizabilities of Fe2O3, GeO2, and V2O5, and the Oxide Additivity Rule. Journal of Solid State Chemistry, 95, 313-318.

[27]   Finger, L.W. and Hazen, R.M. (1980) Crystal Structure and Isothermal Compression of Fe2O3, Cr2O3, and V2O3 to 50 Kbars. Journal of Applied Physics, 51, 5362.

[28]   Adkins, J. (1989) Conduction in Granular Metals-Variable-Range Hopping in a Coulomb Gap? Journal of Physics: Condensed Matter, 1, 1253-1259.

[29]   Wechsler, B.A. and Prewitt, C.T. (1984) Crystal Structure of Ilmenite (FeTiO3) at High Temperature and at High Pressure. American Mineralogist, 69, 176-185.

[30]   Bharadwaja, S.N., Venkatasubramanian, C., Fieldhouse, N., Ashok, S., Horn, M.W. and Jackson, T.N. (2009) Low Temperature Charge Carrier Hopping Transport Mechanism in Vanadium Oxide Thin Films Grown Using Pulsed dc Sputtering. Applied Physics Letters, 94, Article ID: 222110.

[31]   Rosenbaum, R., Lien, N., Graham, M. and Witcomb, M. (1997) A Useful Mott-Efros-Shklovskii Resistivity Crossover Formulation for Three-Dimensional Films. Journal of Physics: Condensed Matter, 9, 6247-6256.

[32]   Sasagawa, T. (2008) Evidence for Charge Glasslike Behaviour in Lightly Doped La2-xSrxCuO4 at Low Temperatures. Physical Review Letters, 101, Article ID: 177004.

[33]   Tang, J.K., Feng, L. and Wang, K.-Y. (1999) Variable Range Hopping and Spin-Dependent Hopping Resistance in Magnetic Iron Oxide Films. Physica B: Condensed Matter, 284-288, 1974-1975.

[34]   Yan, S.-S., Liu, J.P., Mei, L.M., Tian, Y.F., Song, H.Q., Chen, Y.X. and Liu, G.L. (2006) Spin-Dependent Variable Range Hopping and Magnetoresistance in Ti1-xCoxO2 and Zn1-xCoxO Magnetic Semiconductor Film. Journal of Physics: Condensed Matter, 18, Article ID: 10469.

[35]   Tian, Y.F., Yan, S.-S., Zhang, Y.P., Song, H.Q., Ji, G., Liu, G.L., Chen, Y.X., Mei, L.M., et al. (2006) Transformation of Electrical Transport from Variable Range Hopping to Hard Gap Resistance in Zn1-xFexO1-v Magnetic Semiconductor Films. Journal of Applied Physics, 100, Article ID: 103901.

[36]   Dietl, T. and Spalek, J. (1983) Effect of Thermodynamic Fluctuations of Magnetization on the Bound Magnetic Polaron in Dilute Magnetic Semiconductors. Physical Review B, 28, 1548-1563.

[37]   Van Esch, A., Van Bockstal, L., De Boeck, J., Verbank, G., Van Steenberg, A.S., Wellmann, P.J., Grietens, B., Bogaerts, R., Herlach, H. and Borghs, G. (1997) Interplay between the Magnetic and Transport Properties in the III-V Diluted Magnetic Semiconductor Ga1-xMnxAs. Physical Review B, 56, 13103-13112.

[38]   Sawicki, M., Dietel, T., Kossut, J., Igalson, J., Wojtowicz, T. and Plesiewicz, W. (1986) Influence of s-d Exchange Interaction on the Conductivity of Cd1-xMnxSe:In in the Weakly Localized Regime. Physical Review Letters, 56, 508-511.

[39]   Huang, H.-H., Yang, C.-A., Huang, P.-H., Lai, C.-H. and Chin, T.S. (2007) Room Temperature Fabricated ZnCoO Diluted Magnetic Semiconductors. Journal of Applied Physics, 101, 09H116-09H116-3.

[40]   Halbo, L. and Sladek, R.J. (1968) Magnetoresistance of Undoped n-Type Gallium Arsenide at Low Temperatures. Physical Review, 173, 794-802.

[41]   Kraak, W., Troppenz, U., Herrmann, R., Chudinov, S.M. and Kulbachinskii, V.A. (1988) Magnetic Freeze-Out and Magnetic-Field-Induced Semiconductor-Semimetal Transition in Bi1-xSbx Alloys under High Hydrostatic Pressure. Physica Status Solidi (B), 148, 333-347.

[42]   Ishida, S. (2003) Magnetic Freeze-Out and Impurity Band Conduction in n-InSb. Physica E: Low-Dimensional Systems and Nanostructures, 18, 294-295.

[43]   Sklovskii, B.I. and Spivak, B.Z. (1984) Interference Phenomena in Variable Range Hopping Conductivity. In: Fritzsche, E. and Pollak, M., Eds., Hopping and Related Phenomena, World Scientific Publishing Company, Singapore, 139150.

[44]   Tian, Y.F., Yan, S.-S., Cao, Q., Deng, J.X., Chen, Y.X., Liu, G.L., Mei, L.M. and Qiang, Y. (2009) Origin of Large Positive Magnetoresistance in the Hard-Gap Regime of Epitaxial Co-Doped ZnO Ferromagnetic Semiconductors. Physical Review B, 79, Article ID: 115209.

[45]   Shklovskii, B.I. and Efros, A.L. (1984) Electronic Properties of Doped Semiconductors. Springer, Berlin, 385.

[46]   Inoe, J. and Maekawa, S. (1996) Theory of Tunneling Magnetoresistance in Granular Magnetic Films. Physical Review B, 53, R11927-R11929.

[47]   Ilyushenkov, D.S., Kozub, V.I., Yassievich, I.N., Nguyen, T.T. and Bruck, E.H. (2011) Ferromagnetic Glass on the Base of Aggregates of Ni Amorphous Nanogranules. Journal of Magnetism and Magnetic Materials, 323, 1588-1592.

[48]   Chikoidze, E., Tchelidze, T., Popova, E., Maso, P., Pondjavidze, N., Keller, N. and Dumont, Y. (2013) Conductivity Type Inversion in Wide Band Gap Antiferromagnetic FeTiO3. Applied Physics Letters, 102, Article ID: 122112.