IJG  Vol.5 No.12 , November 2014
The Pattern of Sediment Dispersion in the Front Sector of the Stenhouse and Ajax Glaciers, Visca Anchorage, King George Island, Antarctica
Abstract: This study investigated the dispersal pattern of suspended sediment in the areas near the Stenhouse and Ajax glaciers, Visca Anchorage, Martel Inlet, King George Island, Antarctica. This study was conducted using visible band processing of Quickbird high-resolution spatial images obtained in October 2006. The methodology was also based on the collection and interpretation of data obtained from water samples collected in Admiralty Bay in December 2004. The digital processing of satellite images was performed using a classification method based on the reflectance characteristics of water. The classified images improved visual identification of the dispersion pattern of suspended sediments in the study area. These data were related to the interpretation of analyses conducted on suspended particulate matter (SPM) in the water. The sediment dispersal pattern observed may be associated with glacial erosion processes, their input of meltwater from the front of the glaciers into the study area, detritus flow processes and glaciomarine circulation in the region.
Cite this paper: Scigliano, B. , Rosa, K. , Bastos, A. and Braga, E. (2014) The Pattern of Sediment Dispersion in the Front Sector of the Stenhouse and Ajax Glaciers, Visca Anchorage, King George Island, Antarctica. International Journal of Geosciences, 5, 1509-1520. doi: 10.4236/ijg.2014.512123.

[1]   Simoes, J.S., Ferron, F.A., Bernardo, R.T., Aristarain, A.J., Stievenard, M., Pourchet, M. and Delmas, R.J. (2004) Ice Core Study from the King George Island, South Shetlands, Antarctica. Pesquisa Antartica Brasileira, 4, 9-23.

[2]   Rakusa-Suszczewski, S. (1993) The Maritime Antarctic Coastal Ecosystem of Admiralty Bay. Polish Academy of Sciences, 27-30.

[3]   Bintanja, R. (1995) Local Surface Energy Balance of the Ecology Glacier, King George Island, Antarctica: Measurements and Modeling. Antarctic Science, 7, 315-325.

[4]   Braun, M., Saurer, H., Simoes, J.C., Vogt, S. and Goßmann, H. (2001) The Influence of Large-Scale Atmospheric Circulation on Surface Energy Balance and Ablation on King George Island, Antarctica. International Journal of Climatology, 21, 21-36.

[5]   Ferrando, F.A., Vieira, R. and Rosa, K.K. (2009) Sobre el calentamiento global en la Isla Rey Jorge: Procesos y evidencias en el glaciar Wanda y su entorno. Revista Informaciones Geograficas, 41, 25-40.

[6]   Park, B.-K., Chang, S.-K., Yoon, H.I. and Chung, H. (1998) Recent Retreat of Ice Cliffs, King George Island, South Shetland Islands, Antarctic Peninsula. Annals Glaciology, 27, 633-635.

[7]   Simoes, J.C. and Bremer, U.F. (1995) Investigations of King George Island Ice Cover Using ERS-1/SAR and SPOT Imagery. Revista SELPER, 11, 56-60.

[8]   Simoes, J.C., Bremer, U.F., Aquino, F.E. and Ferron, F.A. (1999). Morphology and Variations of Glacial Drainage Basins in King George Island Icefield, Antarctica. Annals of Glaciology, 29, 220-224.

[9]   Braun, M. and GoBmann, H. (2002) Glacial Changes in the Area of Admiralty Bay and Potter Cove, King George Island, Antarctica. In: Beyer, M. and Boelter, M. Eds., GeoEcology of Terrestrial Antarctic Oases, Springer Verlag, Berlin, 75-89.

[10]   Kejna, M., Laska, K. and Caputa, Z. (1998) Recession of the Ecology Glacier in the Period 1961-1996. In: Glowacki and Bednarek, Eds., Polish Polar Studies, 25th International Polar Symposium, Warszawa, 121-128.

[11]   Cook, A.J., Fox, A.J., Vaugham, D.G. and Ferrigno, J.G. (2005) Retreating Glacier Fronts on the Antarctic Peninsula over the Past Half-Century. Science, 308, 541-544.

[12]   Pichlmaier, M., Aquino, F.E., Da-Silva, C.S. and Braun, M. (2004) Suspended Sediments in Admiralty Bay, King George Island (Antarctica). Revista de Pesquisa Antartica Brasileira, 4, 77-85.

[13]   Pruszak, Z. (1980) Currents Circulation in the Waters of Admiralty Bay (Region of Arctowski Station on King George Island). Polish Polar Research, 1, 55-74.

[14]   Domack, E.W. and Ishman, S. (1993) Oceanographic and Physiographic Controls on Modern Sedimentation within Antarctic Fjords. Geological Society of America Bulletin, 105, 1175-1189.<1175:OAPCOM>2.3.CO;2

[15]   Powell, R.D. (1990) Glacimarine Processes at Grounding-Line Fans and Their Growth to Ice-Contact Deltas. In: Dowdeswell, J.A. and Scourcse, J.D., Eds., Glacimarine Environments: Processes and Sediments, Geological Society Special Publication No. 53, London, 53-73.

[16]   Wang, X., Wang, Q., Liu, G. and Li, H. (2005) A Study on the Quantitative Remote Sensing Model for the Suspended Sediment Concentration in Coastal Water with ASTER. Conference Paper, n. A290054.

[17]   Strickland, J.D.H. and Parsons, T.R. (1968) A Practical Handbook of Seawater Analyses. Bulletin Fisheries Research Board of Canada, n. 167, Fisheries Research Board of Canada, Ottawa, 311 p.

[18]   Grasshoff, K., Ehrardt, M. and Kremling, K. (1983) Methods of Seawater Analysis. 2nd rev. and Extended ed., Verlag Chemie, Weinheim, 419 p.

[19]   Vogt, S. and Braun, M. (2004) Influence of Glaciers and Snow Cover on Terrestrial and Marine Ecosystems as Revealed by Remotely-Sensed Data. Revista de Pesquisa Antartica Brasileira, 4, 105-118.

[20]   Favaro, D.I.T., Silva, P.S.C., Mazzilli, B.P., Cavallaro, G.P.M., Taddei, M.H.T., Berbel, G.G.B. and Braga, E.S. (2012) Sediment Geochemistry in Admiralty Bay (Antarctica): Trace, Rare Earth Elements and Radionuclides. Revista de Pesquisa Antartica Brasileira, 5, 11-24.