[1] Maeda, M., Kubo, K., Nishi, T. and Futai, M. (1996) Roles of Gastric GATA DNA-Binding Proteins. The Journal of Experimental Biology, 199, 513-520.
[2] Molkentin, J.D. (2000) The Zinc Finger-Containing Transcription Factors GATA-4, -5, and -6; Ubiquitously Expressed Regulators of Tissue-Specific Gene Expression. The Journal of Biological Chemistry, 275, 38949-38952.
http://dx.doi.org/10.1074/jbc.R000029200
[3] Maeda, M., Ohashi, K. and Ohashi-Kobayashi, A. (2005) Further Extension of Mammalian GATA-6. Development Growth and Differentiation, 47, 591-600.
http://dx.doi.org/10.1111/j.1440-169X.2005.00837.x
[4] Ohara, Y., Atarashi, T., Ishibashi, T., Ohashi-Kobayashi, A. and Maeda, M. (2006) GATA-4 Gene Organization and Analysis of Its Promoter. Biological Pharmaceutical Bulletin, 29, 410-419.
http://dx.doi.org/10.1248/bpb.29.410
[5] Crossley, M., Merika, M. and Orkin, S.H. (1995) Self-Association of the Erythroid Transcription Factor GATA-1 Mediated by Its Zinc Finger Domain. Molecular and Cellular Biology, 15, 2448-2456.
[6] Morrisey, E.E., Ip, H.S., Tang, Z. and Parmacek, M.S. (1997) GATA-4 Activates Transcription via Two Novel Domains That Are Conserved within the GATA-4/5/6 Subfamily. The Journal of Biological Chemistry, 272, 8515-8524.
http://dx.doi.org/10.1074/jbc.272.13.8515
[7] Takeda, M., Obayashi, K., Kobayashi, A. and Maeda, M. (2004) A Unique Role of an Amino Terminal 16-Residue Region of Long-Type GATA-6. Journal of Biochemstry, 135, 639-650.
http://dx.doi.org/10.1093/jb/mvh077
[8] Brewer, A., Gove, C., Davies, A., McNulty, C., Barrow, D., Koutsourakisi, M., Farzaneh, F., Pizzey, J., Bomford, A. and Patient, R. (1999) The Human and Mouse GATA-6 Genes Utilize Two Promoters and Two Initiation Codons. The Journal of Biological Chemistry, 274, 38004-38016.
http://dx.doi.org/10.1074/jbc.274.53.38004
[9] Obayashi, K., Takada, K., Ohashi, K., Kobayashi-Ohashi, A. and Maeda, M. (2012) Role of the PEST Sequence in the Long-Type GATA-6 DNA-Binding Protein Expressed in Human Cancer Cells. Advances in Bioscience and Biotechnology, 3, 314-320.
http://dx.doi.org/10.4236/abb.2012.34045
[10] Rogers, S., Wells, R. and Rechsteiner, M. (1986) Amino Acid Sequence Common to Rapidly Degraded Proteins: The PEST Hypothesis. Science, 234, 364-368.
http://dx.doi.org/10.1126/science.2876518
[11] Sanger, F., Coulson, A.R., Barrell, B.G., Smith, A.J.H. and Roe, B.A. (1980) Cloning in Single-Stranded Bacteriophage as an Aid to Rapid DNA Sequencing. Journal of Molecular Biology, 143, 161-178.
http://dx.doi.org/10.1016/0022-2836(80)90196-5
[12] Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. 2nd Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor.
[13] Laemmli, U.K. (1970) Cleavage of Structural Proteins during the Assembly of the Bacteriophage T4. Nature, 227, 680-685.
http://dx.doi.org/10.1038/227680a0
[14] Tsuge, T., Uetani, K., Sato, R., Ohashi-Kobayashi, A. and Maeda, M. (2008) Cyclic AMP-Dependent Proteolysis of GATA-6 Expressed on the Intracellular Membrane. Cell Biology International, 32, 298-303.
http://dx.doi.org/10.1016/j.cellbi.2007.10.005
[15] Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J. and Klenk, D.C. (1985) Measurement of Proteins Using Bicinchroninic Acid. Analytical Biochemistry, 150, 76-85.
http://dx.doi.org/10.1016/0003-2697(85)90442-7
[16] Takada, K., Obayashi, K., Ohashi, K., Kobayashi-Ohashi, A., Nakanishi-Matsui, M. and Maeda, M. (2014) Amino-Terminal Extension of 146 Residues of L-Type GATA-6 Is Required for Transcriptional Activation but Not for Self-Association. Biochemical and Biophysical Research Communications, 452, 962-966.
http://dx.doi.org/10.1016/j.bbrc.2014.09.019
[17] Kozak, M. (1991) Structural Features in Eukaryotic mRMAs That Modulate the Initiation of Translation. The Journal of Biological Chemistry, 266, 19867-19870.
[18] Singh, G.P., Ganapathi, M., Sandhu, K.S. and Dash, D. (2006) Intrinsic Unstructuredness and Abundance of PEST Motifs in Eukaryotic Proteomes. PROTEINS: Structure, Function, and Bioinformatics, 62, 309-315.
http://dx.doi.org/10.1002/prot.20746
[19] Sue, S.-C. and Dyson, H.J. (2009) Interaction of the IκBα C-Terminal PEST Sequence with NF-κB: Insights into the Inhibition of NF-κB DNA Binding by IκBα. Journal of Molecular Biology, 388, 824-838.
http://dx.doi.org/10.1016/j.jmb.2009.03.048
[20] Davidson, D., Cloutier, J.-F., Gregorieff, A. and Veillette, A. (1997) Inhibitory Tyrosine Protein Kinase p50csk Is Associated with Protein-Tyrosine Phosphatase PTP-PEST in Hemopoietic and Non-Hemopoietic Cells. The Journal of Biological Chemistry, 272, 23455-23462.
http://dx.doi.org/10.1074/jbc.272.37.23455
[21] Charest, A., Wagner, J., Kwan, M. and Tremblay, M.L. (1997) Coupling of the Murine Protein Tyrosine Phosphatase PEST to the Epidermal Growth Factor (EGF) Receptor through a Src Homology 3 (SH3) Domain-Mediated Association with Grb2. Oncogene, 14, 1643-1651.
http://dx.doi.org/10.1038/sj.onc.1201008
[22] Playford, M.P., Lyons, P.D., Sastry, S.K. and Schaller, M.D. (2006) Identification of a Filamin Docking Site on PTP-PEST. The Journal of Biological Chemistry, 281, 34104-34112.
http://dx.doi.org/10.1074/jbc.M606277200
[23] Kiran, M. and Nagarajaram, H.A. (2013) Global versus Local Hubs in Human Protein-Protein Interaction Network. Journal of Proteome Research, 12, 5436-5446.
http://dx.doi.org/10.1021/pr4002788
[24] Adzhubei, A.A., Sternberg, M.J.E. and Makarov, A.A. (2013) Polyproline-II Helix in Proteins: Structure and Function. Journal of Molecular Biology, 425, 2100-2132.
http://dx.doi.org/10.1016/j.jmb.2013.03.018
[25] Dornan, D., Shimizu, H., Burch, L., Smith, A.J. and Hupp, T.R. (2003) The Proline Repeat Domain of p53 Binds Directly to the Transcriptional Coactivator p300 and Allosterically Controls DNA-Dependent Acetylation of p53. Molecular and Cellular Biology, 23, 8846-8861.
http://dx.doi.org/10.1128/MCB.23.23.8846-8861.2003
[26] Singh, V., Lin, R., Yang, J., Cha, B., Sarker, R., Tse, C.M. and Donowitz, M. (2014) AKT and GSK-3 Are Necessary for Direct Ezrin Binding to NHE3 as Part of a C-Terminal Stimulatory Complex: Role of a Novel Ser-Rich NHE3 C-Terminal Motif in NHE3 Activity and Trafficking. The Journal of Biological Chemistry, 289, 5449-5461.
http://dx.doi.org/10.1074/jbc.M113.521336
[27] Zheng, H., You, H., Zhou, X.Z., Murray, S.A., Uchida, T., Wulf, G., Gu, L., Tang, X., Lu, K.P. and Xiao, Z.-X.J. (2002) The Prolylisomerase Pin1 Is a Regulator of p53 in Genotoxic Response. Nature, 419, 849-853.
http://dx.doi.org/10.1038/nature01116
[28] Pham, D.Q.-D. and Sivasubramanian, N. (1992) Sequence and in Vitro Translational Analysis of a 1629-Nucleotide ORF in Autographa californica Nuclear Polyhedrosis Virus Strain E2. Gene, 122, 345-348.
http://dx.doi.org/10.1016/0378-1119(92)90224-D
[29] John, M.E. and Keller, G. (1995) Characterization of mRNA for a Proline-Rich Protein of Cotton Fiber. Plant Physiology, 108, 669-676.
http://dx.doi.org/10.1104/pp.108.2.669
[30] Rath, A., Glibowicka, M., Nadeau, V.G., Chen, G. and Deber, C.M. (2009) Detergent Binding Explains Anomalous SDS-PAGE Migration of Membrane Proteins. Proceedings of the National Academy of Sciences of the United States of America, 106, 1760-1765.
http://dx.doi.org/10.1073/pnas.0813167106
[31] Shi, Y., Mowery, R.A., Ashley, J., Hentz, M., Ramirez, A.J., Bilgicer, B., Slunt-Brown, H., Borchelt, D.R. and Shaw, B.F. (2012) Abnormal SDS-PAGE Migration of Cytosolic Proteins Can Identify Domains and Mechanisms That Control Surfactant Binding. The Protein Society, 21, 1197-1209.
http://dx.doi.org/10.1002/pro.2107