[1] Frei, J., Aellig, A. and Nessi, P. (1975) Enzyme System and Coenzymes Involved in the Energy Metabolism of Leukocytes. Function and Metabolism of Polymorphonuclear Neutrophils. Annales de Biologie Clinique (Paris), 33, 459-464.
[2] Frei, J. and Jemelin, M. (1972) Metabolism of Leukocytes in Health and Disease. Introduction, an Approach to Direct Metabolic Studies in Man. Enzyme, 13, 3-6.
[3] Frei, J., Maillard, M., Markert, M. and Aellig, M. (1980) Energetic Metabolism of Leukocytes. XI. Presence and Function of Creatine Kinase in Leukocytes. Enzyme, 25, 258-264.
[4] Jambunathan, P. and Zhang, K. (2014) Novel Pathways and Products from 2-Keto Acids. Current Opinion in Biotechnology, 29c, 1-7.
http://dx.doi.org/10.1016/j.copbio.2014.01.008
[5] Mühling, J., Nickolaus, K.A., Halabi, M., Fuchs, M. and Krüll, M. (2005) Alterations in Neutrophil (PMN) Free Intracellular Alpha-Keto Acid Profiles and Immune Functions Induced by L-Alanyl-L-Glutamine, Arginine or Taurine. Amino Acids, 29, 289-300.
http://dx.doi.org/10.1007/s00726-005-0223-8
[6] Mühling, J., Tussing, F., Nickolaus, K.A., Matejec, R. and Henrich, M. (2010) Effects of Alpha-Ketoglutarate on Neutrophil Intracellular Amino and Alpha-Keto Acid Profiles and ROS Production. Amino Acids, 38, 167-177.
http://dx.doi.org/10.1007/s00726-008-0224-5
[7] Markert, M. and Frei, J. (1978) Energy Metabolism of Polymorphonuclear Neutrophils and Phagocytosis (Proceedings). Annales de Biologie Clinique (Paris), 36, 201-204.
[8] Stjernholm, R.L., Burns, C.P. and Hohnadel, J.H. (1972) Carbohydrate Metabolism by Leukocytes. Enzyme, 13, 7-31.
[9] Stjernholm, R.L., Dimitrov, N.V. and Pijanowski, L.J. (1969) Carbohydrate Metabolism in Leukocytes. IX. Citric Acid Cycle Activity in Human Neutrophils. Journal of the Reticuloendothelial Society, 6, 194-201.
[10] Sznajd, J., Malkiewicz-Wasowicz, B., Naskalski, J. and Lisiewicz, J. (1972) Biochemistry of Normal and Leukemic Leukocytes. X. Energy and Carbohydrate Metabolism of Neutrophilic Granulocytes. Przegl Lek, 29, 634-640.
[11] He, G., Jiang, Y., Zhang, B. and Wu, G. (2014) The Effect of HIF-1α on Glucose Metabolism, Growth and Apoptosis of Pancreatic Cancerous Cells. Asia Pacific Journal of Clinical Nutrition, 23, 174-180.
[12] Hou, Y.Q., Wang, L., Ding, B., Liu, Y., Zhu, H., Liu, J., Li, Y.T., Kang, P., Yin, Y.L. and Wu, G.Y. (2011) Alpha-Ketoglutarate and Intestinal Function. Frontiers in Bioscience (Landmark Ed), 16, 1186-1196.
http://dx.doi.org/10.2741/3783
[13] Tang, D., Kang, R., Zeh III, H.J. and Lotze, M.T. (2011) High-Mobility Group Box 1, Oxidative Stress, and Disease. Antioxidants & Redox Signaling, 14, 1315-1335.
http://dx.doi.org/10.1089/ars.2010.3356
[14] Fuchs, M., Engel, J., Campos, M., Matejec, R., Henrich, M., Harbach, H., et al. (2009) Intracellular Alpha-Keto Acid Quantification by Fluorescence-HPLC. Amino Acids, 36, 1-11.
http://dx.doi.org/10.1007/s00726-008-0033-x
[15] Roth, E. (2008) Nonnutritive Effects of Glutamine. Journal of Nutrition, 138, 2025S-2031S.
[16] Cai, B., Deitch, E.A. and Ulloa, L. (2010) Novel Insights for Systemic Inflammation in Sepsis and Hemorrhage. Mediators of Inflammation, 2010, Article ID: 642462.
[17] Deng, Z.H., Ti, D.D., Xue, H., Lin, J., Wang, L.H. and Yan, G.T. (2009) Effects of Ethyl Pyruvate on Injuries of Sepsis in Mice. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 21, 460-462.
[18] Fink, M.P. (2008) Ethyl Pyruvate. Current Opinion in Anaesthesiology, 21, 160-167.
http://dx.doi.org/10.1097/ACO.0b013e3282f63c2e
[19] Jacobs, C.C., Holcombe, S.J., Cook, V.L., Gandy, J.C., Hauptman, J.G. and Sordillo, L.M. (2013) Ethyl Pyruvate Diminishes the Inflammatory Response to Lipopolysaccharide Infusion in Horses. Equine Veterinary Journal, 45, 333- 339.
http://dx.doi.org/10.1111/j.2042-3306.2012.00634.x
[20] Kung, C.W., Lee, Y.M., Cheng, P.Y., Peng, Y.J. and Yen, M.H. (2011) Ethyl Pyruvate Reduces Acute Lung Injury via Regulation of iNOS and HO-1 Expression in Endotoxemic Rats. Journal of Surgical Research, 167, e323-e331.
http://dx.doi.org/10.1016/j.jss.2011.01.006
[21] Onur, E., Akalin, B., Memisoglu, K., Karip, A.B., Aydin, M.T., Altun, H. and Ekci, B. (2012) Ethyl Pyruvate Improves Healing of Colonic Anastomosis in a Rat Model of Peritonitis. Surgical Innovation, 19, 394-398.
http://dx.doi.org/10.1177/1553350611432158
[22] Zhou, F. (2009) Stable Aqueous Solution Containing Sodium Pyruvate, and the Preparation Thereof. IPC8 Class: AA61K3314FI, USPC Class: 424677.
[23] Mathioudakis, D., Engel, J., Welters, I.D., Dehne, M.G., Matejec, R., Harbach, H., et al. (2011) Pyruvate: Immunonutritional Effects on Neutrophil Intracellular Amino or Alpha-Keto Acid Profiles and Reactive Oxygen Species Production. Amino Acids, 40, 1077-1090.
http://dx.doi.org/10.1007/s00726-010-0731-z
[24] Mühling, J., Fuchs, M., Dehne, M.G., Sablotzki, A., Menges, T., Weber, B. and Hempelmann, G. (1999) Quantitative Determination of Free Intracellular Amino Acids in Single Human Polymorphonuclear Leucocytes: Recent Developments in Sample Preparation and High-Performance Liquid Chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 728, 157-166.
http://dx.doi.org/10.1016/S0378-4347(99)00114-0
[25] Mühling, J., Fuchs, M., Campos, M.E., Gonter, J., Engel, J.M., Sablotzki, A., et al. (2003) Quantitative Determination of Free Intracellular Alpha-Keto Acids in Neutrophils. Journal of Chromatography B, 789, 383-392.
http://dx.doi.org/10.1016/S1570-0232(03)00163-6
[26] Mühling, J., Fuchs, M., Fleck, C., Sablotzki, A., Krüll, M., Dehne, M.G., Gonter, J., Weiss, S., Engel, J. and Hempelmann, G. (2002) Effects of Arginine, L-alanyl-L-glutamine or Taurine on Neutrophil (PMN) Free Amino Acid Profiles and Immune Functions in Vitro. Amino Acids, 22, 39-53.
http://dx.doi.org/10.1007/s726-002-8200-9
[27] Abunnaja, S., Cuviello, A. and Sanchez, J.A. (2013) Enteral and Parenteral Nutrition in the Perioperative Period: State of the Art. Nutrients, 5, 608-623.
http://dx.doi.org/10.3390/nu5020608
[28] Pierre, J.F., Heneghan, A.F., Lawson, C.M., Wischmeyer, P.E., Kozar, R.A. and Kudsk, K.A. (2013) Pharmaconutrition Review, Physiological Mechanisms. JPEN Journal of Parenteral and Enteral Nutrition, 37, 51s-65s.
http://dx.doi.org/10.1177/0148607113493326
[29] Weimann, A. (2013) Immunonutrition in Intensive Care Medicine. Medizinische Klinik, Intensivmedizin und Notfallmedizin, 108, 85-94; Quiz 95.
[30] Gabrilovich, D.I. (1999) The Neutrophils, New Outlook for Old Cells. Imperial College Press, London.
[31] Mühling, J., Fuchs, M., Campos, M., Gonter, J., Sablotzki, A., Engel, J., et al. (2004) Effects of Ornithine on Neutrophil (PMN) Free Amino Acid and Alpha-Keto Acid Profiles and Immune Functions in Vitro. Amino Acids, 27, 313-319.
http://dx.doi.org/10.1007/s00726-004-0126-0
[32] Mates, J.M., Segura, J.A., Martin-Rufian, M., Campos-Sandoval, J.A., Alonso, F.J. and Marquez, J. (2013) Glutaminase Isoenzymes as Key Regulators in Metabolic and Oxidative Stress against Cancer. Current Molecular Medicine, 13, 514-534.
http://dx.doi.org/10.2174/1566524011313040005
[33] Moinard, C., Caldefie, F., Walrand, S., Tridon, A., Chassagne, J., Vasson, M.P. and Cynober, L. (2002) Effects of Ornithine 2-Oxoglutarate on Neutrophils in Stressed Rats: Evidence for the Involvement of Nitric Oxide and Polyamines. Clinical Science, 102, 287-295.
http://dx.doi.org/10.1042/CS20010162
[34] Moinard, C., Caldefie-Chezet, F., Walrand, S., Vasson, M.P. and Cynober, L. (2002) Evidence that Glutamine Modulates Respiratory Burst in Stressed Rat Polymorphonuclear Cells through Its Metabolism into Arginine. British Journal of Nutrition, 88, 689-695.
http://dx.doi.org/10.1079/BJN2002724
[35] Demaria, S., Pikarsky, E., Karin, M., Coussens, L.M., Chen, Y.C., et al. (2010) Cancer and Inflammation, Promise for Biologic Therapy. Journal of Immunotherapy, 33, 335-351.
http://dx.doi.org/10.1097/CJI.0b013e3181d32e74
[36] Sybirna, N., Dziewulska-Szwajkowska, D., Barska, M. and Dzugaj, A. (2006) Mononuclear and Polymorphonuclear Leukocytes Show Increased Fructose-1,6-Bisphosphatase Activity in Patients with Type 1 Diabetes Mellitus. Cell Biology International, 30, 624-630.
http://dx.doi.org/10.1016/j.cellbi.2006.03.008
[37] Castell, L., Vance, C., Abbott, R., Marquez, J. and Eggleton, P. (2004) Granule Localization of Glutaminase in Human Neutrophils and the Consequence of Glutamine Utilization for Neutrophil Activity. Journal of Biological Chemistry, 279, 13305-13310.
http://dx.doi.org/10.1074/jbc.M309520200
[38] Newsholme, P., Curi, R., Pithon Curi, T.C., Murphy, C.J., Garcia, C. and Pires de Melo, M. (1999) Glutamine Metabolism by Lymphocytes, Macrophages, and Neutrophils: Its Importance in Health and Disease. Journal of Nutritional Biochemistry, 10, 316-324.
http://dx.doi.org/10.1016/S0955-2863(99)00022-4
[39] Pithon-Curi, T.C., De Melo, M.P. and Curi, R. (2004) Glucose and Glutamine Utilization by Rat Lymphocytes, Monocytes and Neutrophils in Culture: A Comparative Study. Cell Biochemistry and Function, 22, 321-326.
http://dx.doi.org/10.1002/cbf.1109
[40] Mayadas, T.N., Cullere, X. and Lowell, C.A. (2014) The Multifaceted Functions of Neutrophils. Annual Review of Pathology, 9, 181-218.
http://dx.doi.org/10.1146/annurev-pathol-020712-164023
[41] Wilgus, T.A., Roy, S. and McDaniel, J.C. (2013) Neutrophils and Wound Repair: Positive Actions and Negative Reactions. Advances in Wound Care, 2, 379-388.
http://dx.doi.org/10.1089/wound.2012.0383
[42] Fauth, U., Schlechtriemen, T., Heinrichs, W., Puente-Gonzalez, I. and Halmagyi, M. (1993) The Measurement of Enzyme Activities in the Resting Human Polymorphonuclear Leukocyte-Critical Estimate of a Method. European Journal of Clinical Chemistry and Clinical Biochemistry, 31, 5-16.
[43] Fauth, U., Heinrichs, W., Puente-Gonzalez, I. and Halmagyi, M. (1990) Maximal Turnover Rates of Glycolysis Enzymes and of the Citrate Cycle of Separated Granulocytes in the Postoperative Period. Infusionstherapie, 17, 178-183.
[44] Jemelin, M. and Frei, J. (1970) Leukocyte Energy Metabolism. 3. Anaerobic and Aerobic ATP Production and Related Enzymes. Enzymologia Biologica et Clinica (Basel), 11, 298-323.
[45] Gabrilovich, D. (2013) The Neutrophils. New Outlook for Old Cells. 3rd Edition, Imperial College Press, London.
http://dx.doi.org/10.1142/p823
[46] Break, T.J., Jun, S., Indramohan, M., Carr, K.D., Sieve, A.N., Dory, L. and Berg, R.E. (2012) Extracellular Superoxide Dismutase Inhibits Innate Immune Responses and Clearance of an Intracellular Bacterial Infection. Journal of Immunology, 188, 3342-3350.
http://dx.doi.org/10.4049/jimmunol.1102341
[47] Radi, R. (2013) Peroxynitrite, a Stealthy Biological Oxidant. Journal of Biological Chemistry, 288, 26464-26472.
http://dx.doi.org/10.1074/jbc.R113.472936
[48] Vitecek, J., Lojek, A., Valacchi, G. and Kubala, L. (2012) Arginine-Based Inhibitors of Nitric Oxide Synthase: Therapeutic Potential and Challenges. Mediators of Inflammation, 2012, Article ID: 318087.
[49] Wu, G., Bazer, F.W., Davis, T.A., Kim, S.W., Li, P., Marc Rhoads, J., et al. (2009) Arginine Metabolism and Nutrition in Growth, Health and Disease. Amino Acids, 37, 153-168.
http://dx.doi.org/10.1007/s00726-008-0210-y
[50] Wu, G.Y. (2009) Amino Acids: Metabolism, Functions, and Nutrition. Amino Acids, 37, 1-17.
http://dx.doi.org/10.1007/s00726-009-0269-0
[51] Buijs, N., Luttikhold, J., Houdijk, A.P. and van Leeuwen, P.A. (2012) The Role of a Disturbed Arginine/NO Metabolism in the Onset of Cancer Cachexia: A Working Hypothesis. Current Medicinal Chemistry, 19, 5278-5286.
http://dx.doi.org/10.2174/092986712803833290
[52] Munder, M. (2009) Arginase: An Emerging Key Player in the Mammalian Immune System. British Journal of Pharmacology, 158, 638-651.
http://dx.doi.org/10.1111/j.1476-5381.2009.00291.x
[53] Keough, M.P., Hayes, C.S., DeFeo, K. and Gilmour, S.K. (2011) Elevated Epidermal Ornithine Decarboxylase Activity Suppresses Contact Hypersensitivity. Journal of Investigative Dermatology, 131, 158-166.
http://dx.doi.org/10.1038/jid.2010.263
[54] Lavoie-Lamoureux, A., Martin, J.G. and Lavoie, J.P. (2014) Characterization of Arginase Expression by Equine Neutrophils. Veterinary Immunology and Immunopathology, 157, 206-213.
http://dx.doi.org/10.1016/j.vetimm.2013.12.007
[55] Cervelli, M., Amendola, R., Polticelli, F. and Mariottini, P. (2012) Spermine Oxidase: Ten Years after. Amino Acids, 42, 441-450.
http://dx.doi.org/10.1007/s00726-011-1014-z
[56] Brooks, W.H. (2012) Autoimmune Diseases and Polyamines. Clinical Reviews in Allergy & Immunology, 42, 58-70.
http://dx.doi.org/10.1007/s12016-011-8290-y
[57] Minois, N., Carmona-Gutierrez, D. and Madeo, F. (2011) Polyamines in Aging and Disease. Aging (Albany NY), 3, 716-732.
[58] Wallace, H.M. (2009) The Polyamines: Past, Present and Future. Essays in Biochemistry, 46, 1-10.
http://dx.doi.org/10.1042/bse0460001
[59] Casero, R.A. and Pegg, A.E. (2009) Polyamine Catabolism and Disease. Biochemical Journal, 421, 323-338.
http://dx.doi.org/10.1042/BJ20090598
[60] Fortin, C.F., McDonald, P.P., Fulop, T. and Lesur, O. (2010) Sepsis, Leukocytes, and Nitric Oxide (NO): An Intricate Affair. Shock, 33, 344-352.
http://dx.doi.org/10.1097/SHK.0b013e3181c0f068
[61] Valenca, S.S., Rueff-Barroso, C.R., Pimenta, W.A., Melo, A.C., Nesi, R.T., et al. (2011) L-NAME and L-Arginine Differentially Ameliorate Cigarette Smoke-Induced Emphysema in Mice. Pulmonary Pharmacology & Therapeutics, 24, 587-594.
http://dx.doi.org/10.1016/j.pupt.2011.05.006
[62] Weaver, H., Shukla, N., Ellinsworth, D. and Jeremy, J.Y. (2012) Oxidative Stress and Vein Graft Failure: A Focus on NADH Oxidase, Nitric Oxide and Eicosanoids. Current Opinion in Pharmacology, 12, 160-165.
http://dx.doi.org/10.1016/j.coph.2012.01.005
[63] Singh, S. and Gupta, A.K. (2011) Nitric Oxide: Role in Tumour Biology and iNOS/NO-Based Anticancer Therapies. Cancer Chemotherapy and Pharmacology, 67, 1211-1224.
http://dx.doi.org/10.1007/s00280-011-1654-4
[64] Azadniv, M., Torres, A., Boscia, J., Speers, D.M., Frasier, L.M., Utell, M.J. and Frampton, M.W. (2001) Neutrophils in Lung Inflammation: Which Reactive Oxygen Species Are Being Measured? Inhalation Toxicology, 13, 485-495.
http://dx.doi.org/10.1080/08958370151131855
[65] Mühling, J., Engel, J., Halabi, M., Müller, M., Fuchs, M., et al. (2006) Nitric Oxide and Polyamine Pathway-Dependent Modulation of Neutrophil Free Amino-and Alpha-Keto Acid Profiles or Host Defense Capability. Amino Acids, 31, 11-26.
http://dx.doi.org/10.1007/s00726-006-0273-6
[66] Engel, J.M., Mühling, J., Weiss, S., Karcher, B., Lohr, T., Menges, T., Little, S. and Hempelmann, G. (2006) Relationship of Taurine and Other Amino Acids in Plasma and in Neutrophils of Septic Trauma Patients. Amino Acids, 30, 87-94.
http://dx.doi.org/10.1007/s00726-005-0238-1
[67] Hansen, S.H. and Grunnet, N. (2013) Taurine, Glutathione and Bioenergetics. Advances in Experimental Medicine and Biology, 776, 3-12.
http://dx.doi.org/10.1007/978-1-4614-6093-0_1
[68] Buijs, N., Worner, E.A., Brinkmann, S.J., Luttikhold, J., van der Meij, B.S., Houdijk, A.P.J. and van Leeuwen, P.A.M. (2013) Novel Nutritional Substrates in Surgery. Proceedings of the Nutrition Society, 72, 277-287.
http://dx.doi.org/10.1017/S0029665112003047
[69] Ripps, H. and Shen, W. (2012) Review: Taurine: A “Very Essential” Amino Acid. Molecular Vision, 18, 2673-2686.
[70] Fink, M.P. (2007) Ethyl Pyruvate: A Novel Anti-Inflammatory Agent. Journal of Internal Medicine, 261, 349-362.
http://dx.doi.org/10.1111/j.1365-2796.2007.01789.x
[71] Fink, M.P. (2007) Ethyl Pyruvate: A Novel Treatment for Sepsis. Current Drug Targets, 8, 515-518.
http://dx.doi.org/10.2174/138945007780362791
[72] Fink, M.P. (2004) Ethyl Pyruvate: A Novel Treatment for Sepsis and Shock. Minerva Anestesiologica, 70, 365-371.
[73] Reade, M.C. and Fink, M.P. (2005) Bench-to-Bedside Review: Amelioration of Acute Renal Impairment Using Ethyl Pyruvate. Critical Care, 9, 556-560.
http://dx.doi.org/10.1186/cc3892
[74] Mackenzie, I. and Lever, A. (2007) Management of Sepsis. British Medical Journal, 335, 929-932.
http://dx.doi.org/10.1136/bmj.39346.696620.AE
[75] Kao, K.K. and Fink, M.P. (2010) The Biochemical Basis for the Anti-Inflammatory and Cytoprotective Actions of Ethyl Pyruvate and Related Compounds. Biochemical Pharmacology, 80, 151-159.
http://dx.doi.org/10.1016/j.bcp.2010.03.007
[76] Das, U.N. (2006) Pyruvate Is an Endogenous Anti-Inflammatory and Anti-Oxidant Molecule. Medical Science Monitor, 12, RA79-RA84.
[77] Das, U.N. (2006) Is Pyruvate an Endogenous Anti-Inflammatory Molecule? Nutrition, 22, 965-972.
http://dx.doi.org/10.1016/j.nut.2006.05.009
[78] Bates, C.M. and Lin, F. (2005) Future Strategies in the Treatment of Acute Renal Failure: Growth Factors, Stem Cells, and Other Novel Therapies. Current Opinion in Pediatrics, 17, 215-220.
http://dx.doi.org/10.1097/01.mop.0000156269.48510.4e
[79] Aneja, R. and Fink, M.P. (2007) Promising Therapeutic Agents for Sepsis. Trends in Microbiology, 15, 31-37.
http://dx.doi.org/10.1016/j.tim.2006.11.005
[80] Bossola, M., Pacelli, F., Rosa, F., Tortorelli, A. and Doglietto, G.B. (2011) Does Nutrition Support Stimulate Tumor Growth in Humans? Nutrition in Clinical Practice, 26, 174-180.
http://dx.doi.org/10.1177/0884533611399771
[81] Nemeth, T. and Mocsai, A. (2012) The Role of Neutrophils in Autoimmune Diseases. Immunology Letters, 143, 9-19.
http://dx.doi.org/10.1016/j.imlet.2012.01.013
[82] Williams, A.E. and Chambers, R.C. (2014) The Mercurial Nature of Neutrophils: Still an Enigma in ARDS? American Journal of Physiology-Lung Cellular and Molecular Physiology, 306, L217-L230.
http://dx.doi.org/10.1152/ajplung.00311.2013