Back
 AJAC  Vol.5 No.16 , November 2014
Fundamental Open Questions on Engineering of “Super” Hydrogen Sorption in Graphite Nanofibers: Relevance for Clean Energy Applications
Abstract: Herein, some fundamental open questions on engineering of “super” hydrogen sorption (storage) in carbonaceous nanomaterials are considered, namely: 1) on thermodynamic stability and related characteristics of some hydrogenated graphene layers nanostructures: relevance to the hydrogen storage problem; 2) determination of thermodynamic characteristics of graphene hydrides; 3) a treatment and interpretation of some recent STM, STS, HREELS/LEED, PES, ARPS and Raman spectroscopy data on hydrogensorbtion with epitaxial graphenes; 4) on the physics of intercalation of hydrogen into surface graphene-like nanoblisters in pyrolytic graphite and epitaxial graphenes; 5) on the physics of the elastic and plastic deformation of graphene walls in hydrogenated graphite nanofibers; 6) on the physics of engineering of “super” hydrogen sorption (storage) in carbonaceous nanomaterials, in the light of analysis of the Rodriguez-Baker extraordinary data and some others. These fundamental open questions may be solved within several years.
Cite this paper: Nechaev, Y. , Yürüm, A. , Tekin, A. , Yavuz, N. , Yürüm, Y. and Veziroglu, T. (2014) Fundamental Open Questions on Engineering of “Super” Hydrogen Sorption in Graphite Nanofibers: Relevance for Clean Energy Applications. American Journal of Analytical Chemistry, 5, 1151-1165. doi: 10.4236/ajac.2014.516122.
References

[1]   Zuettel, A. (2011) Hydrogen the Future Energy Carrier. In: Materials of International Hydrogen Research Showcase 2011, University of Birmingham, Birmingham, 13-15 April 2011.
http://www.uk-shec.org.uk/ukshec/showcase/ShowcasePresentations.html

[2]   Nechaev, Y.S. and Veziroglu, T.N. (2013) On Thermodynamic Stability of Hydrogenated Graphene Layers, Relevance to the Hydrogen On-Board Storage. The Open Fuel Cells Journal, 6, 21-39.
http://dx.doi.org/10.2174/1875932701306010021

[3]   Nechaev, Y.S. and Veziroglu, T.N. (2013) Thermodynamic Aspects of the Stability of the Graphene/Graphane/Hydrogen Systems, Layers, Relevance to the Hydrogen On-Board Storage Problem. Advances in Materials Physics and Chemistry, 3, 255-280.
http://dx.doi.org/10.4236/ampc.2013.35037

[4]   Chambers, A., Park, C., Terry, R., Baker, K. and Rodriguez, N.M. (1998) Hydrogen Storage in Graphite Nanofibers. Journal of Physical Chemistry B, 102, 4253-4256.
http://dx.doi.org/10.1021/jp980114l

[5]   Park, C., Anderson, P.E., Chambers, A., Tan, C.D., Hidalgo, R. and Rodriguez, N.M. (1999) Further Studies of the Interaction of Hydrogen with Graphite Nanofibers. Journal of Physical Chemistry B, 103, 10572-10581.
http://dx.doi.org/10.1021/jp990500i

[6]   Nelly, M., Rodriguez, N.M., Terry, R. and Baker, K. (1997) Storage of Hydrogen in Layered Nanostructures. US Patent No. 5653951.

[7]   Nelly, M., Rodriguez, N.M., Terry, R. and Baker, K. (2000) Method for Introducing Hydrogen into Layered Nanostructures. US Patent No. 6159538.

[8]   Baker, R.T.K. (2005) Encyclopedia of Materials: Science and Technology. Elsevier, Amsterdam, 932.

[9]   Gupta, B.P. and Srivastava, O.N. (2000) Synthesis and Hydrogenation Behavior of Graphitic Nanofibers. Journal of Hydrogen Energy, 25, 825-830.
http://dx.doi.org/10.1016/S0360-3199(99)00104-4

[10]   Gupta, B.P. and Srivastava, O.N. (2001) Further Studies on Microstructural Characterization and Hydrogenation Behavior of Graphitic Nanofibers. International Journal of Hydrogen Energy, 26, 857-862.
http://dx.doi.org/10.1016/S0360-3199(01)00021-0

[11]   Gupta, B.K., Tiwari, R.S. and Srivastava, O.N. (2004) Studies on Synthesis and Hydrogenation Behavior of Graphitic Nanofibers Prepared through Palladium Catalyst Assisted Thermal Cracking of Acetylene. Journal of Alloys and Compounds, 381, 301-308.
http://dx.doi.org/10.1016/j.jallcom.2004.03.094

[12]   Gupta, B.P. and Srivastava, O.N. (2006) New Carbon Variants: Graphitic Nanofibers (Nano-Springs, Nano-Shoeckers) as Hydrogen Storage Materials. International Scientific Journal for Alternative Energy and Ecology, 5, 63.

[13]   Suh, M.P., Park, H.J., Prasad, T.K. and Lim, D.W. (2012) Hydrogen Storage in Metal-Organic Frameworks. Chemical Reviews, 112, 782-835.
http://dx.doi.org/10.1021/cr200274s

[14]   Tozzini, V. and Pellegrini, V. (2013) Prospects for Hydrogen Storage in Graphene. Physical Chemistry Chemical Physics, 15, 80-89.
http://dx.doi.org/10.1039/c2cp42538f

[15]   Satyapal, S., Petrovic, J., Read, C., Thomas, G. and Ordaz, G. (2007) The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards Meeting Hydrogen-Powered Vehicle Requirements. Catalysis Today, 120, 246-256.
http://dx.doi.org/10.1016/j.cattod.2006.09.022

[16]   DOE (2012) Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles.
http://wwwl.eere.energy.gov/hydrogenandfuelcells/storage/%20pdfs/targets_onboard_hydro_storage.pdf

[17]   Fruchart, D. (2011) Large Scale Development of Metal Hydrides for Stationary and Nomad Hydrogen Storage Units. Which Are Potential Partners to Built Innovative Solutions for Sustainable and Clean Energy Systems? In: Materials of International Hydrogen Research Showcase 2011, University of Birmingham, Birmingham, 13-15 April 2011.
http://www.uk-shec.org.uk/uk-shec/showcase/ShowcasePresentations.html

[18]   Akiba, E. (2011) Hydrogen Related R&D and Hydrogen Storage Materials in Japan. In: Materials of International Hydrogen Research Showcase 2011, University of Birmingham, Birmingham, 13-15 April 2011.

[19]   Kim, J.W. (2011) Current Status of R&D on Hydrogen Production and Storage in Korea. In: Materials of International Hydrogen Research Showcase 2011, University of Birmingham, Birmingham, 13-15 April 2011.

[20]   Maeland, A.J. (2002) The Storage of Hydrogen for Vehicular Use—A Review and Reality Check. International Scientific Journal for Alternative Energy and Ecology, 1, 19-29.

[21]   Rzepka, M., Bauer, E., Reichenauer, G., Schliermann, T., Bernhardt, B., Bohmhammel, K., Henneberg, E., Knoll, U., Maneck, H.E. and Braue, W. (2005) Hydrogen Storage Capacity of Catalytically Grown Carbon Nanofibers. The Journal of Physical Chemistry B, 109, 14979-14989.
http://dx.doi.org/10.1021/jp051371a

[22]   Reichenauer, G., Rzepka, M., Bauer, E., Schliermann, T., Bernhardt, B., Bohmhammel, K., Henneberg, E., Knoll, U., Maneck, H.E. and Braue, W. (2006) Hydrogen Storage Capacity of Catalytically Grown Carbon Nanofibers. Proceedings of International Conference on Carbon, The Robert Gordon University, Aberdeen, 6-21 July 2006.

[23]   Ramos, A., Cameán, I. and García, A.B. (2013) Graphitization Thermal Treatment of Carbon Nanofibers. Carbon, 59, 2-32.
http://dx.doi.org/10.1016/j.carbon.2013.03.031

[24]   Camacho, R.M. and Guirado-López, R.A. (2013) Adsorption and Diffusion of Hydrogen on C60-Supported Ptn Clusters. The Journal of Physical Chemistry C, 117, 10059-10069.
http://dx.doi.org/10.1021/jp3113123

[25]   Gao, Q., Qu, F.Y., Lin, H.M. and Zheng, W.T. (2013) A Simple Method to Synthesize Graphitic Mesoporous Carbon Materials with Different Structures. Journal of Porous Materials, 20, 983-988.
http://dx.doi.org/10.1007/s10934-013-9677-3

[26]   He, Z., Wang, S., Iqbal, Z. and Wang, X.Q. (2013) Hydrogen Storage in Hierarchical Nanoporous Silicon-Carbon Nanotube Architectures. International Journal of Energy Research, 37, 754-760.
http://dx.doi.org/10.1002/er.2979

[27]   Lueking, A.D., Yang, R.T., Rodriguez, N.M. and Baker, R.T.K. (2004) Hydrogen Storage in Graphite Nanofibers: Effect of Synthesis Catalyst and Pretreatment Conditions. Langmuir, 20, 704-721.
http://dx.doi.org/10.1021/la0349875

[28]   Strobel, R., Garche, J., Moseley, P.T., Jorissen, L. and Wolf, G. (2006) Hydrogen Storage by Carbon Materials. Journal of Power Sources, 159, 781-801.
http://dx.doi.org/10.1016/j.jpowsour.2006.03.047

[29]   Yürüm, Y., Taralp, A. and Veziroglu, T.N. (2009) Storage of Hydrogen in Nanostructured Carbon Materials. International Journal of Hydrogen Energy, 34, 3784-3798.
http://dx.doi.org/10.1016/j.ijhydene.2009.03.001

[30]   Kowalczyk, P., Holyst, R., Terrones, M. and Terrones, H. (2007) Hydrogen Storage in Nanoporous Carbon Materials; Myth and Facts. Physical Chemistry Chemical Physics, 9, 1786-1792.
http://dx.doi.org/10.1039/b618747a

[31]   Nechaev, Y.S. (2012) Solid Hydrogen in Multigraphane Nanostructures. International Scientific Journal for Fundamental and Applied Physics, 1, 38-60.

[32]   Nechaev, Y.S. (2011) On the Solid Hydrogen Carrier Intercalation in Graphane-Like Regions in Carbon-Based Nanostructures. International Journal of Hydrogen Energy, 36, 9023-9031. http://dx.doi.org/10.1016/j.ijhydene.2011.04.073

[33]   Nechaev, Y.S. (2011) The High-Density Hydrogen Carrier Intercalation in Graphane-Like Nanostructures, Relevance to Its On-Board Storage in Fuel-Cell-Powered Vehicles. The Open Fuel Cells Journal, 4, 16-29.
http://dx.doi.org/10.2174/1875932701104010016

[34]   Nechaev, Y.S. (2006) The Nature, Kinetics, and Ultimate Storage Capacity of Hydrogen Storage by Carbon Nanostructures. Physics-Uspekhi, 49, 563-591.
http://dx.doi.org/10.1070/PU2006v049n06ABEH002424

[35]   Nechaev, Y.S. (2010) Carbon Nanomaterials, Relevance to the Hydrogen Storage Problem. Journal of Nano Research, 12, 1-44.
http://dx.doi.org/10.4028/www.scientific.net/JNanoR.12.1

[36]   Sofo, J.O., Chaudhari, A.S. and Barber, G.D. (2007) Graphane: A Two-Dimensional Hydrocarbon. Physical Review B, 75, Article ID: 153401.
http://dx.doi.org/10.1103/PhysRevB.75.153401

[37]   Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K. and Novoselov, K.S. (2009) Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science, 323, 610-613.
http://dx.doi.org/10.1126/science.1167130

[38]   Openov, L.A. and Podlivaev, A.I. (2010) Thermal Desorption of Hydrogen from Graphane. Technical Physics Letters, 36, 31-33.
http://dx.doi.org/10.1134/S1063785010010104

[39]   Dzhurakhalov, A.A. and Peeters, F.M. (2011) Structure and Energetics of Hydrogen Chemisorbed on a Single Graphene Layer to Produce Graphane. Carbon, 49, 3258-3266.
http://dx.doi.org/10.1016/j.carbon.2011.03.052

[40]   Pimenova, S.M., Melkhanova, S.V., Kolesov, V.P. and Lobach, A.S. (2002) The Enthalpy of Formation and C-H Bond Enthalpy Hydrofullerene C60H36. The Journal of Physical Chemistry B, 106, 2127-2130.
http://dx.doi.org/10.1021/jp012258x

[41]   Bauschlicher Jr., C.W. and So, C.R. (2002) High Coverages of Hydrogen on (10.0), (9.0) and (5.5) Carbon Nanotubes. Nano Letters, 2, 337-341.
http://dx.doi.org/10.1021/nl020283o

[42]   Wojtaszek, M., Tombros, N., Garreta, A., Van Loosdrecht, P.H.M and Van Wees, B.J. (2011) A Road to Hydrogenating Graphene by a Reactive Ion Etching Plasma. Journal of Applied Physics, 110, Article ID: 063715.
http://dx.doi.org/10.1063/1.3638696

[43]   Castellanos-Gomez, A., Wojtaszek, M., Arramel, Tombros, N. and Van Wees, B.J. (2012) Reversible Hydrogenation and Bandgap Opening of Graphene and Graphite Surfaces Probed by Scanning Tunneling Spectroscopy. Small, 8, 1607-1613.
http://dx.doi.org/10.1002/smll.201101908

[44]   Bocquet, F.C., Bisson, R., Themlin, J.M., Layet, J.M. and Angot, T. (2012) Reversible Hydrogenation of Deuterium-Intercalated Quasi-Free-Standing Graphene on SiC (0001). Physical Review B—Condensed Matter and Materials Physics, 85, Article ID: 201401.
http://dx.doi.org/10.1103/PhysRevB.85.201401

[45]   Luo, Z.Q., Yu, T., Kim, K.J., Ni, Z.H., You, Y.M., Lim, S., Shen, Z.X., Wang, S.Z. and Lin, J.Y. (2009) Thickness-Dependent Reversible Hydrogenation of Graphene Layers. ACS Nano, 3, 1781-1788.
http://dx.doi.org/10.1021/nn900371t

[46]   Watcharinyanon, S., Virojanadara, C., Osiecki, J.R., Zakharov, A.A, Yakimova, R., Uhrberg, R.I.G. and Johansson, L.I. (2011) Hydrogen Intercalation of Graphene Grown on 6H-SiC (0001). Surface Science, 605, 1662-1668.
http://dx.doi.org/10.1016/j.susc.2010.12.018

[47]   Hornekaer, L., Sljivancanin, Z., Xu, W., Otero, R., Rauls, E., Stensgaard, I., Lægsgaard, E., Hammer, B. and Besenbacher, F. (2006) Metastable Structures and Recombination Pathways for Atomic Hydrogen on the Graphite (0001) Surface. Physical Review Letters, 96, Article ID: 156104.
http://dx.doi.org/10.1103/PhysRevLett.96.156104

[48]   Waqar, Z., Klusek, Z., Denisov, E., Kompaniets, T., Makarenko, I., Titkov, A. and Saleem, A. (2000) Effect of Atomic Hydrogen Sorption and Desorption on Topography and Electronic Properties of Pyrolytic Graphite. Electrochemical Society Proceedings, 16, 254-265.

[49]   Waqar, Z. (2007) Hydrogen Accumulation in Graphite and Etching of Graphite on Hydrogen Desorption. Journal of Materials Science, 42, 1169-1176.
http://dx.doi.org/10.1007/s10853-006-1453-1

[50]   Balog, R., Jorgensen, B., Wells, J., Lægsgaard, E., Hofmann, P., Besenbacher, F. and Hornekær, L. (2009) Atomic Hydrogen Adsorbate Structures on Graphene. Journal of the American Chemical Society, 131, 8744-8745.
http://dx.doi.org/10.1021/ja902714h

[51]   Xiang, H.J., Kan, E.J., Wei, S.H., Gong, X.G. and Whangbo, M.H. (2010) Thermodynamically Stable Single-Side Hydrogenated Graphene. Physical Review B, 82, Article ID: 165425.
http://dx.doi.org/10.1103/PhysRevB.82.165425

 
 
Top