AJAC  Vol.5 No.16 , November 2014
Extending Functionality of Microalgae and Transesterification under Supercritical Fluid Conditions
ABSTRACT
The experimental data on supercritical CO2 extraction of microalgae are presented. It is confirmed that microalgae contains omega-3 fatty acid components. Phase equilibria data are presented for the triolein-methanol (T = 413 K, P = 5.8 - 11.9 MPa) and ethyl eicosapentaenoate-carbon dioxide (T = 313 - 333 K, P = 10 - 21 MPa) binary systems. The scheme of the batch-type experimental setup for supercritical transesterification of oils is presented. Temperature and molar ratio dependences of non-refined palm oil yield to fatty acid methyl esters (FAME) are presented for T = 563 - 693 K, methanol to palm oil molar ratio 39:1. Experiments on ultrasonic emulsification of rapeseed oil-ethanol mixture (molar ratios 150:1 - 7:1) were conducted. Research data on ultrasonic emulsion stability are presented for the time range of 0 - 40 minutes after ultrasonication completion. Correlation is defined between FAME yield of emulsified reaction mixtures and the emulsion grain size. FAME yields are compared for emulsified and non-emulsified reaction mixtures.

Cite this paper
Biktach, C. , Usmanov, R. , Gumerov, F. , Zaripov, Z. , Gabitov, F. , Khayrutdinov, V. and Abdulagatov, I. (2014) Extending Functionality of Microalgae and Transesterification under Supercritical Fluid Conditions. American Journal of Analytical Chemistry, 5, 1129-1141. doi: 10.4236/ajac.2014.516120.
References
[1]   Ma, F. and Hanna, M.A. (1999) Biodiesel Production: A Review. Bioresource Technology, 70, 1-15.
http://dx.doi.org/10.1016/S0960-8524(99)00025-5

[2]   Demirbas, A. (2007) Biodiesel: A Realistic Fuel Alternative for Diesel Engines. Technology & Engineering. Springer-Verlag, London, 208 p.

[3]   Kusdiana, D. and Saka, S. (2001) Methyl Esterification of Free Fatty Acids of Rapeseed Oil as Treated in Supercritical Methanol. Journal of Chemical Engineering of Japan, 34, 383-387.
http://dx.doi.org/10.1252/jcej.34.383

[4]   Gao, Y., Gregor, C., Liang, Y., Tang, D. and Tweed, C. (2012) Algae Biodiesel—A Feasibility Report. Chemistry Central Journal, 6, S1.
http://dx.doi.org/10.1186/1752-153X-6-S1-S1

[5]   Chisti, Y. (2007) Biodiesel from Microalgae Beats Bioethanol. Trends in Biotechnology, 26, 126-131.
http://dx.doi.org/10.1016/j.tibtech.2007.12.002

[6]   Metting, F.B. (1996) Bio-diversity and Application of Microalgae. Journal of Industrial Microbiology & Biotechnology, 17, 477-489.
http://dx.doi.org/10.1007/BF01574779

[7]   Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006) Commercial Applications of Microalgae. Journal of Bioscience and Bioengineering, 101, 87-96.
http://dx.doi.org/10.1263/jbb.101.87

[8]   Lands, W.E. (1986) Fish, Omega-3 and Human Health. AOCS Publishing, Orlando, 235 p.

[9]   Kinsella, J.E. (1987) Seafoods and Fish Oils in Human Health and Disease. Marcel Dekker Inc., New York, 317 p.

[10]   Scott, D., Srirama, K. and Sanjeevi, P.B. (2007) Omega-3 Fatty Acids for Nutrition and Medicine: Considering Microalgae Oil as a Vegetarian Source of EPA and DHA. Current Diabetes Reviews, 3, 198-203.
http://dx.doi.org/10.2174/157339907781368968

[11]   Asri, N.P., Machmudah, S., Wahyudiono, W., Suprapto, S., Budikarjono, K., Roesyadi, A. and Goto, M. (2013) Non Catalytic Transesterification of Vegetables Oil to Biodiesel in Sub- and Supercritical Methanol: A Kinetic’s Study. Bulletin of Chemical Reaction Engineering & Catalysis, 7, 215-223.
http://dx.doi.org/10.9767/bcrec.7.3.4060.215-223

[12]   Tan, K.T., Lee, K.T. and Mohamed, A.R. (2009) Production of FAME by Palm Oil Transesterification via Supercritical Methanol Technology. Biomass and Bioenergy, 33, 1096-1099.
http://dx.doi.org/10.1016/j.biombioe.2009.04.003

[13]   Rathore, V. and Madras, G. (2007) Synthesis of Biodiesel from Edible and Non-Edible Oils in Supercritical Alcohols and Enzymatic Synthesis in Supercritical Carbon Dioxide. Fuel, 86, 2650-2659.
http://dx.doi.org/10.1016/j.fuel.2007.03.014

[14]   Chanchaochai, P., Boonnoun, P., Laosiripojana, N., Goto, M., Jongsomjit, B., Panpranot, J., Mekasuwandumrong, O. and Shotipruk, A. (2013) Transesterification of Palm Oil at Near Critical Conditions Using Sulfonated Carbon-Based Acid Catalyst. Chemical Engineering Communications, 200, 1542-1552.
http://dx.doi.org/10.1080/00986445.2012.749249

[15]   Hong, S.T., Kim, J.-W., Jang, W.-H., Lim, J.S., Park, H.S., Yoo, K.-P., Apfel, C. and Arlt, W. (2009) Transesterification of Palm Oil Using Supercritical Methanol with Co-Solvent HCFC-141b. Research on Chemical Intermediates, 35, 197-207.
http://dx.doi.org/10.1007/s11164-008-0018-0

[16]   Jomtib, N., Goto, M., Sasaki, M. and Shotipruk, A. (2006) Production of Biodiesel from Palm Oil in Supercritical Methanol. Chulalongkorn University, Bangkok, 24-27.

[17]   Biktashev, S.A., Yarullin, L.Y., Gumerov, F.M., Gabitov, F.R., Usmanov, R.A., Abdulagatov, I.M. and Willson, B. (2011) Extraction of Biologically Active Fatty Acids from Microalgae in Supercritical Carbon Dioxide. Herald of Kazan Technological University, 17, 251-253.

[18]   Temelli, F., LeBlanc, E. and Fu, L. (1995) Supercritical CO2 Extraction of Oil from Atlantic Mackerel (Scomber scombrus) and Protein Functionality. Journal of Food Science, 60, 703-706.
http://dx.doi.org/10.1007/s11164-008-0018-0

[19]   Chernyshev, A.K., Gumerov, F.M., Tsvetnitskiy, G.N., Yarullin, R.S., Ivanov, S.V., Levin, B.V., Shafran, M.I., Zhilin, I.F., Beskov, A.G. and Chernyshev, K.A. (2013) Carbon Dioxide: Properties, Collection (Obtaining), Application. Infohim, Moscow, 580-694.

[20]   Brunetti, L., Daghetta, A., Fedell, E., Kikic, I. and Zanderighi, L. (1998) Deacidification of Olive Oils by Supercritical Carbon Dioxide. Journal of the American Oil Chemists’ Society, 66, 209-217.
http://dx.doi.org/10.1007/BF02546062

[21]   Molero Gómez, A., Pereyra López, C. and de la Ossa, E.M. (1996) Recovery of Grape Seed Oil by Liquid and Supercritical Carbon Dioxide Extraction: A Comparison with Conventional Solvent Extraction. The Chemical Engineering Journal and the Biochemical Engineering Journal, 61, 227-231.
http://dx.doi.org/10.1016/0923-0467(95)03040-9

[22]   Gabitov, F.R., Usmanov, R.A., Yarullin, L.Y., Biktashev, S.A., Gayfullina, R.R. and Maryashev, A.V. (2012) Experimental Study of the Supercritical Extraction of Algae. Herald of Kazan Technological University, 15, 67-69.

[23]   Gayfullina, R.R., Kurbangaleyev, M.S., Madyakin, V.F., Abramov, Y.K., Zaripov, Z.I., Anashkin, D.A. and Hismatov, B.M. (2009) Experimental Setup for Studying Pulsed Vacuum Drying. Russian Nat. Sci.-Tech. and Method. Conf. Proc., 97 p.

[24]   Gumerov, F.M., Sabirzyanov, A.N. and Gumerova, G.I. (2007) Sup- and Supercritical Fluids in Polymer Processing. Fen, Kazan, 334 p.

[25]   Vargaftik, N.B. (1972) Thermophysical Properties of Gases and Liquids, a Reference Book. Nauka, Moscow, 720 p.

[26]   Biktashev, S.A., Usmanov, R.A., Gabitov, R.R., Gazizov, R.A., Gumerov, F.M., Gabitov, F.R., Abdulagatov, I.M., Yarullin, R.S. and Yakushev, I.A. (2011) Transesterification of Rapeseed and Palm Oils in Supercritical Methanol and Ethanol. Biomass and Bioenergy, 35, 2999-3011.
http://dx.doi.org/10.1016/j.biombioe.2011.03.038

[27]   Saka, S. and Kusdiana, D. (2001) Biodiesel Fuel from Rapeseed Oil as Prepared in Supercritical Methanol. Fuel, 80, 225-231.
http://dx.doi.org/10.1016/S0016-2361(00)00083-1

[28]   Gabitov, R.R., Usmanov, R.A., Gumerov, F.M. and Gabitov, F.R. (2012) Research of Emulsion Stability of Rapeseed Oil—Ethanol Mixture Obtained by Ultrasonic Emulsification. Herald of Kazan Technological University, 7, 129-132.

[29]   Tang, Z., Du, Z., Min, E., Gao, L., Jiang, T. and Han, B. (2006) Phase Equilibria of Methanol—Triolein System at Elevated Temperature and Pressure. Fluid Phase Equilibria, 239, 8-11.
http://dx.doi.org/10.1016/j.fluid.2005.10.010

[30]   Bharath, R., Inomata, H., Arai, K. Shoji, K. and Noguchi, Y. (1989) Vapor-Liquid Equilibria for Binary Mixtures of Carbon Dioxide and Fatty Acid Ethyl Esters. Fluid Phase Equilibria, 50, 315-327.
http://dx.doi.org/10.1016/0378-3812(89)80298-5

[31]   Petchmala, A., Laosiripojana, N., Jongsomjit, B., Goto, M., Panpranot, J., Mekasuwandumrong, O. and Shotipruk, A. (2010) Transesterification of Palm Oil and Esterification of Palm Fatty Acid in Near- and Super-Critical Methanol with SO4-ZrO2 Catalysts. Fuel, 89, 2387-2392.
http://dx.doi.org/10.1016/j.fuel.2010.04.010

[32]   Tan, K.T., Lee, K.T. and Mohamed, A.R. (2011) Potential of Waste Palm Cooking Oil for Catalyst-Free Biodiesel Production. Energy, 36, 2085-2088.
http://dx.doi.org/10.1016/j.energy.2010.05.003

[33]   Sawangkeaw, R., Teeravitud, S., Bunyakiat, K. and Ngamprasertsith, S. (2011) Biofuel Production from Palm Oil with Supercritical Alcohols: Effects of the Alcohol to Oil Molar Ratios on the Biofuel Chemical Composition and Properties. Bioresource Technology, 102, 10704-10710.
http://dx.doi.org/10.1016/j.biortech.2011.08.105

[34]   Song, E.-S., Lim, J., Lee, H.-S. and Lee, Y.-W. (2008) Trans-esterification of RBD Palm Oil Using Supercritical Methanol. The Journal of Supercritical Fluids, 44, 356-363.
http://dx.doi.org/10.1016/j.supflu.2007.09.010

[35]   Kogan, V.B., Fridman, V.M. and Kafarov, V.V. (1961) “Binary Systems” in Solubility Reference Book. USSR Academy of Science Press, Moscow-Leningrad, 970 p.

[36]   Choi, C.-S., Kim, J.-W., Jeong, C.-J., Kim, H. and Yoo, K.-P. (2011) Transesterification Kinetics of Palm Olein Oil Using Supercritical Methanol. The Journal of Supercritical Fluids, 58, 365-370.
http://dx.doi.org/10.1016/j.supflu.2011.06.015

[37]   Sawangkeaw, R., Tejvirat, P., Ngamcharassrivichai, C. and Ngamprasertsith, C. (2012) Supercritical Transesterification of Palm Oil and Hydrated Ethanol in a Fixed Bed Reactor with a CaO/Al2O3 Catalyst. Energies, 5, 1062-1080.
http://dx.doi.org/10.3390/en5041062

[38]   Micic, R.D., Tomic, M.D., Kiss, F.E., Nikolic-Djoric, E.B. and Simikic, M.D. (2014) Influence of Reaction Conditions and Type of Alcohol on Biodiesel Yields and Process Economics of Supercritical Transesterification. Energy Conversion and Management, 86, 717-726.

 
 
Top