AJAC  Vol.5 No.16 , November 2014
Extending Functionality of Microalgae and Transesterification under Supercritical Fluid Conditions
The experimental data on supercritical CO2 extraction of microalgae are presented. It is confirmed that microalgae contains omega-3 fatty acid components. Phase equilibria data are presented for the triolein-methanol (T = 413 K, P = 5.8 - 11.9 MPa) and ethyl eicosapentaenoate-carbon dioxide (T = 313 - 333 K, P = 10 - 21 MPa) binary systems. The scheme of the batch-type experimental setup for supercritical transesterification of oils is presented. Temperature and molar ratio dependences of non-refined palm oil yield to fatty acid methyl esters (FAME) are presented for T = 563 - 693 K, methanol to palm oil molar ratio 39:1. Experiments on ultrasonic emulsification of rapeseed oil-ethanol mixture (molar ratios 150:1 - 7:1) were conducted. Research data on ultrasonic emulsion stability are presented for the time range of 0 - 40 minutes after ultrasonication completion. Correlation is defined between FAME yield of emulsified reaction mixtures and the emulsion grain size. FAME yields are compared for emulsified and non-emulsified reaction mixtures.

Cite this paper
Biktach, C. , Usmanov, R. , Gumerov, F. , Zaripov, Z. , Gabitov, F. , Khayrutdinov, V. and Abdulagatov, I. (2014) Extending Functionality of Microalgae and Transesterification under Supercritical Fluid Conditions. American Journal of Analytical Chemistry, 5, 1129-1141. doi: 10.4236/ajac.2014.516120.
[1]   Ma, F. and Hanna, M.A. (1999) Biodiesel Production: A Review. Bioresource Technology, 70, 1-15.

[2]   Demirbas, A. (2007) Biodiesel: A Realistic Fuel Alternative for Diesel Engines. Technology & Engineering. Springer-Verlag, London, 208 p.

[3]   Kusdiana, D. and Saka, S. (2001) Methyl Esterification of Free Fatty Acids of Rapeseed Oil as Treated in Supercritical Methanol. Journal of Chemical Engineering of Japan, 34, 383-387.

[4]   Gao, Y., Gregor, C., Liang, Y., Tang, D. and Tweed, C. (2012) Algae Biodiesel—A Feasibility Report. Chemistry Central Journal, 6, S1.

[5]   Chisti, Y. (2007) Biodiesel from Microalgae Beats Bioethanol. Trends in Biotechnology, 26, 126-131.

[6]   Metting, F.B. (1996) Bio-diversity and Application of Microalgae. Journal of Industrial Microbiology & Biotechnology, 17, 477-489.

[7]   Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006) Commercial Applications of Microalgae. Journal of Bioscience and Bioengineering, 101, 87-96.

[8]   Lands, W.E. (1986) Fish, Omega-3 and Human Health. AOCS Publishing, Orlando, 235 p.

[9]   Kinsella, J.E. (1987) Seafoods and Fish Oils in Human Health and Disease. Marcel Dekker Inc., New York, 317 p.

[10]   Scott, D., Srirama, K. and Sanjeevi, P.B. (2007) Omega-3 Fatty Acids for Nutrition and Medicine: Considering Microalgae Oil as a Vegetarian Source of EPA and DHA. Current Diabetes Reviews, 3, 198-203.

[11]   Asri, N.P., Machmudah, S., Wahyudiono, W., Suprapto, S., Budikarjono, K., Roesyadi, A. and Goto, M. (2013) Non Catalytic Transesterification of Vegetables Oil to Biodiesel in Sub- and Supercritical Methanol: A Kinetic’s Study. Bulletin of Chemical Reaction Engineering & Catalysis, 7, 215-223.

[12]   Tan, K.T., Lee, K.T. and Mohamed, A.R. (2009) Production of FAME by Palm Oil Transesterification via Supercritical Methanol Technology. Biomass and Bioenergy, 33, 1096-1099.

[13]   Rathore, V. and Madras, G. (2007) Synthesis of Biodiesel from Edible and Non-Edible Oils in Supercritical Alcohols and Enzymatic Synthesis in Supercritical Carbon Dioxide. Fuel, 86, 2650-2659.

[14]   Chanchaochai, P., Boonnoun, P., Laosiripojana, N., Goto, M., Jongsomjit, B., Panpranot, J., Mekasuwandumrong, O. and Shotipruk, A. (2013) Transesterification of Palm Oil at Near Critical Conditions Using Sulfonated Carbon-Based Acid Catalyst. Chemical Engineering Communications, 200, 1542-1552.

[15]   Hong, S.T., Kim, J.-W., Jang, W.-H., Lim, J.S., Park, H.S., Yoo, K.-P., Apfel, C. and Arlt, W. (2009) Transesterification of Palm Oil Using Supercritical Methanol with Co-Solvent HCFC-141b. Research on Chemical Intermediates, 35, 197-207.

[16]   Jomtib, N., Goto, M., Sasaki, M. and Shotipruk, A. (2006) Production of Biodiesel from Palm Oil in Supercritical Methanol. Chulalongkorn University, Bangkok, 24-27.

[17]   Biktashev, S.A., Yarullin, L.Y., Gumerov, F.M., Gabitov, F.R., Usmanov, R.A., Abdulagatov, I.M. and Willson, B. (2011) Extraction of Biologically Active Fatty Acids from Microalgae in Supercritical Carbon Dioxide. Herald of Kazan Technological University, 17, 251-253.

[18]   Temelli, F., LeBlanc, E. and Fu, L. (1995) Supercritical CO2 Extraction of Oil from Atlantic Mackerel (Scomber scombrus) and Protein Functionality. Journal of Food Science, 60, 703-706.

[19]   Chernyshev, A.K., Gumerov, F.M., Tsvetnitskiy, G.N., Yarullin, R.S., Ivanov, S.V., Levin, B.V., Shafran, M.I., Zhilin, I.F., Beskov, A.G. and Chernyshev, K.A. (2013) Carbon Dioxide: Properties, Collection (Obtaining), Application. Infohim, Moscow, 580-694.

[20]   Brunetti, L., Daghetta, A., Fedell, E., Kikic, I. and Zanderighi, L. (1998) Deacidification of Olive Oils by Supercritical Carbon Dioxide. Journal of the American Oil Chemists’ Society, 66, 209-217.

[21]   Molero Gómez, A., Pereyra López, C. and de la Ossa, E.M. (1996) Recovery of Grape Seed Oil by Liquid and Supercritical Carbon Dioxide Extraction: A Comparison with Conventional Solvent Extraction. The Chemical Engineering Journal and the Biochemical Engineering Journal, 61, 227-231.

[22]   Gabitov, F.R., Usmanov, R.A., Yarullin, L.Y., Biktashev, S.A., Gayfullina, R.R. and Maryashev, A.V. (2012) Experimental Study of the Supercritical Extraction of Algae. Herald of Kazan Technological University, 15, 67-69.

[23]   Gayfullina, R.R., Kurbangaleyev, M.S., Madyakin, V.F., Abramov, Y.K., Zaripov, Z.I., Anashkin, D.A. and Hismatov, B.M. (2009) Experimental Setup for Studying Pulsed Vacuum Drying. Russian Nat. Sci.-Tech. and Method. Conf. Proc., 97 p.

[24]   Gumerov, F.M., Sabirzyanov, A.N. and Gumerova, G.I. (2007) Sup- and Supercritical Fluids in Polymer Processing. Fen, Kazan, 334 p.

[25]   Vargaftik, N.B. (1972) Thermophysical Properties of Gases and Liquids, a Reference Book. Nauka, Moscow, 720 p.

[26]   Biktashev, S.A., Usmanov, R.A., Gabitov, R.R., Gazizov, R.A., Gumerov, F.M., Gabitov, F.R., Abdulagatov, I.M., Yarullin, R.S. and Yakushev, I.A. (2011) Transesterification of Rapeseed and Palm Oils in Supercritical Methanol and Ethanol. Biomass and Bioenergy, 35, 2999-3011.

[27]   Saka, S. and Kusdiana, D. (2001) Biodiesel Fuel from Rapeseed Oil as Prepared in Supercritical Methanol. Fuel, 80, 225-231.

[28]   Gabitov, R.R., Usmanov, R.A., Gumerov, F.M. and Gabitov, F.R. (2012) Research of Emulsion Stability of Rapeseed Oil—Ethanol Mixture Obtained by Ultrasonic Emulsification. Herald of Kazan Technological University, 7, 129-132.

[29]   Tang, Z., Du, Z., Min, E., Gao, L., Jiang, T. and Han, B. (2006) Phase Equilibria of Methanol—Triolein System at Elevated Temperature and Pressure. Fluid Phase Equilibria, 239, 8-11.

[30]   Bharath, R., Inomata, H., Arai, K. Shoji, K. and Noguchi, Y. (1989) Vapor-Liquid Equilibria for Binary Mixtures of Carbon Dioxide and Fatty Acid Ethyl Esters. Fluid Phase Equilibria, 50, 315-327.

[31]   Petchmala, A., Laosiripojana, N., Jongsomjit, B., Goto, M., Panpranot, J., Mekasuwandumrong, O. and Shotipruk, A. (2010) Transesterification of Palm Oil and Esterification of Palm Fatty Acid in Near- and Super-Critical Methanol with SO4-ZrO2 Catalysts. Fuel, 89, 2387-2392.

[32]   Tan, K.T., Lee, K.T. and Mohamed, A.R. (2011) Potential of Waste Palm Cooking Oil for Catalyst-Free Biodiesel Production. Energy, 36, 2085-2088.

[33]   Sawangkeaw, R., Teeravitud, S., Bunyakiat, K. and Ngamprasertsith, S. (2011) Biofuel Production from Palm Oil with Supercritical Alcohols: Effects of the Alcohol to Oil Molar Ratios on the Biofuel Chemical Composition and Properties. Bioresource Technology, 102, 10704-10710.

[34]   Song, E.-S., Lim, J., Lee, H.-S. and Lee, Y.-W. (2008) Trans-esterification of RBD Palm Oil Using Supercritical Methanol. The Journal of Supercritical Fluids, 44, 356-363.

[35]   Kogan, V.B., Fridman, V.M. and Kafarov, V.V. (1961) “Binary Systems” in Solubility Reference Book. USSR Academy of Science Press, Moscow-Leningrad, 970 p.

[36]   Choi, C.-S., Kim, J.-W., Jeong, C.-J., Kim, H. and Yoo, K.-P. (2011) Transesterification Kinetics of Palm Olein Oil Using Supercritical Methanol. The Journal of Supercritical Fluids, 58, 365-370.

[37]   Sawangkeaw, R., Tejvirat, P., Ngamcharassrivichai, C. and Ngamprasertsith, C. (2012) Supercritical Transesterification of Palm Oil and Hydrated Ethanol in a Fixed Bed Reactor with a CaO/Al2O3 Catalyst. Energies, 5, 1062-1080.

[38]   Micic, R.D., Tomic, M.D., Kiss, F.E., Nikolic-Djoric, E.B. and Simikic, M.D. (2014) Influence of Reaction Conditions and Type of Alcohol on Biodiesel Yields and Process Economics of Supercritical Transesterification. Energy Conversion and Management, 86, 717-726.