AMPC  Vol.4 No.11 , November 2014
Electrical Properties of the Al/CuInSe2 Thin Film Schottky Junction
The Schottky diode (Al/p-CuInSe2/FTO) was fabricated by simple deposition of pure Aluminum on the front side of the CuInSe2 thin film. We have investigated its electrical characteristics by measuring the current-voltage (I-V), the capacitance-voltage (C-V) and the electrical impedance in the range of temperature (300 K - 425 K). At room temperature, this heterostructure has shown non-ideal Schottky behavior with 3.98 as ideality factor and 38 μA/cm2 as a reverse saturated current density. The C-V measured at 100 kHz has shown non-linear behavior and an increase with temperature. Similarly, we have estimated, at room temperature, the carrier doping density, the built-in potential and the depletion layer width which are of about 8.66 × 1015 cm﹣3, 1.12 V and 0.37 μm respectively. By the impedance spectroscopy technique, we have found a decrease with temperature of all the serial resistance Rs, the parallel resistance Rp and the capacitance Cp. The frequency dependence of the imaginary part of this impedance was carried out to characterize the carrier transport properties in the heterostructure. From the Arrhenius diagram, we have estimated the activation energy at 460 meV. An equivalent electrical circuit was used for modeling these results.

Cite this paper
Hamrouni, S. , Boujmil, M. and Saad, K. (2014) Electrical Properties of the Al/CuInSe2 Thin Film Schottky Junction. Advances in Materials Physics and Chemistry, 4, 224-235. doi: 10.4236/ampc.2014.411026.
[1]   Singh, J. and Shimakawa, K. (2003) Advances in Amorphous Semiconductors. Advances in Condensed Matter, 5, 336 p.

[2]   Meier, J., Dubail, S. and Cuperus, J. (1998) Recent Progress in Micromorph Solar Cells. Journal of Non-Crystalline Solids, 227-230, 1250-1256.

[3]   Yamamoto, K., Yoshimi, M. and Tawada, Y. (2000) Thin Film Si Solar Cell Fabricated at Low Temperature. Journal of Non-Crystalline Solids, 266-269, 1082-1087.

[4]   Matsuyama, T., Terada, N. and Baba, T. (1996) High-Quality Polycrystalline Silicon Thin Film Prepared by a Solid Phase Crystallization Method. Journal of Non-Crystalline Solids, 198-200, 940-944.

[5]   Pathak, D., Wagner, T., Subrt, J. and Kupcik, J. (2014) Characterization of Mechanically Synthesized AgInSe2 Nanostructures. Canadian Journal of Physics, 92, 789-796.

[6]   Pathak, D., Bedi, R.K. and Kaur, D. (2010) Growth of Heteroepitaxial AgInSe2 Layers on Si (100) Substrates by Hot Wall Method. Optoelectronics and Advanced Materials, 4, 657-661.

[7]   Pathak, D., Bedi, R.K. and Kaur, D. (2010) Characterization of AgInSe2 Films Deposited by Hot Wall Vacuum Evaporation Method. Materials and Manufacturing Processes, 25, 1012-1017.

[8]   Bhattacharya, R.N., Hiltner, J.F. and Batchelor, W. (2000) 15.4% CuIn(1-x)GaxSe2-Based Photovoltaic Cells from Solution-Based Precursor Films. Thin Solid Films, 361-362, 396-399.

[9]   Ramesh, P.P., Uthana, S., Srinivasalu, S.B. and Jayarama, P.R. (1996) Photoconductive Response of Polycrystalline n-AglnSe2 Thin Films. Vacuum, 47, 211-213.

[10]   Hamrouni, S., AlKhalifah, M.S., Boujmil, M.F. and Ben Saad, K. (2014) Preparation and Characterization of CuInSe2 Electrodeposited Thin Films Annealed in Vacuum. Applied Surface Science, 292, 231-236.

[11]   Lee, H., Lee, W., Kim, J.Y., Ko, M.J., Kim, K., Seo, K., et al. (2013) Highly Dense and Crystalline CuInSe2 Thin Films Prepared by Single Bath Electrochemical Deposition. Electrochimica Acta, 87, 450-456.

[12]   Chen, P., Bolmont, D. and Sebenne, C.A. (1984) The Ordered Overlayer Growth of Germanium on Si(111) (7 × 7). Thin Solid Films, 111, 367-373.

[13]   Weir, R.D., Jessop, P.E. and Garside, B.K. (1987) Growth and Annealing of AgInSe2 Thin Films. Canadian Journal of Physics, 65, 1033-1036.

[14]   El-Korashy, A., Abdel-Rahim, M.A. and El-Zahed, H. (1999) Optical Absorption Studies on AgInSe2 and AgInTe2 Thin Films. Thin Solid Films, 338, 207-212.

[15]   Sharma, R.P. (1995) Influence of Annealing in Vacuum on Opto-Electronic Characteristics of Solution Grown AgInSe2 Films. Indian Journal of Pure and Applied Physics, 33, 711.

[16]   Yoshino, K., Kinoshita, A., Shirahata, Y., Oshima, M., Nomoto, K., Yoshitake, T., Ozaki, S. and Ikari, T. (2008) Structural and Electrical Characterization of AgInSe2 Crystals Grown by Hot-Press Method. Journal of Physics, 100, Article ID: 042042.

[17]   Pathak, D., Bedi, R.K., Kaur, D. and Kumar, R. (2011) 200 MeV Ag Ion Beam Induced Modifications in AgInSe2 Films Deposited by Hot Wall Vacuum Evaporation Method. Chalcogenide Letters, 8, 213-222.

[18]   Mustfa, H., Hunter, D., Pradhan, A.K., Roy, U.N., Cui, Y. and Burger, A. (2007) Synthesis and Characterization of AgInSe2 for Application in Thin Film Solar Cells. Thin Solid Film, 515, 7001-7004.

[19]   Pathak, D., Bedi, R.K. and Kaur, D. (2009) Growth of AgInSe2 on Si(100) Substrate by Pulse Laser Ablation. Surface Review and Letters, 16, 917.

[20]   Chopra, N.G., Luyken, R.J., Cherry, K., Crespi, V.H., Cohen, M.L., Louie, S.G. and Zettl, A. (1995) Boron Nitride Nanotubes. Science, 269, 966-967.

[21]   Rhoderick, E.H. and Williams, R.H. (1988) Metal-Semiconductor Contacts. Vol. 48, Oxford University Press, Oxford, 20.

[22]   Dimitruk, N.L., Borkovskaya, O.Y., Dmitruk, I.N., Mamykin, S.V., Horvath, Zs.J. and Mamontova, I.B. (2002) Morphology and Interfacial Properties of Microrelief Metal-Semiconductor Interface. Applied Surface Science, 190, 455-460.

[23]   Saha, A.R., Chattopadhyay, S., Das, R., Bose, C. and Maiti, C.K. (2006) Determination of the Interface Properties of Ni-Silicided Strained Si/SiGe Heterostructure Schottky Diodes Using Capacitance-Voltage Technique. Solid-State Electronics, 50, 1269-1275.

[24]   Osvald, J. and Horvath, Zs.J. (2004) Theoretical Study of the Temperature Dependence of Electrical Characteristics of Schottky Diodes with an Inverse Near-Surface Layer. Applied Surface Science, 234, 349-354.

[25]   Chand, S. and Kumar, J. (1997) Effects of Barrier Height Distribution on the Behavior of a Schottky Diode. Journal of Applied Physics, 82, 5005-5009.

[26]   Rhoderick, E.H. and Williams, R.H. (1988) Metal-Semiconductor Contacts. Vol. 19, Oxford University Press, Oxford, 252.

[27]   Aydin, M.E., Yeldirm, N. and Türüt, A. (2007) Temperature-Dependent Behavior of Ni/4H-nSiC Schottky Contacts. Journal of Applied Physics, 102, Article ID: 043701.

[28]   Chan, C.L. and Shih, I. (1990) Al/p-CuInSe2 Metal-Semiconductor Contacts. Journal of Applied Physics, 68, 156.

[29]   Koscielniak-Mucha, B. and Opanowicz, B.A. (1994) Electronic Properties of Semiconductor Interfaces. Physica Status Solidi (a), 141, 67.

[30]   Magomedov, M.A., Prochukhan, V.D. and Rud, Yu.V. (1992) Electronic Properties of Semiconductor Interfaces. Soviet Physics Semiconductors, 26, 1123.

[31]   Chawanda, A., Mtangi, W., Auret, F.D., Nel, J., Nyamhere, C. and Diale, M. (2012) Current-Voltage Temperature Characteristics of Au/n-Ge (100) Schottky Diodes. Physica B: Condensed Matter, 407, 1574-1577.

[32]   McCafferty, P.G., Sellai, A., Dawson, P. and Elabd, H. (1996) Barrier Characteristics of PtSi/p-Si Schottky Diodes. Solid-State Electronics, 39, 583-592.

[33]   Chand, S. and Kumar, J. (1996) Current Transport in Pd2Si/n-Si(100) Schottky Barrier Diodes at Low Temperatures. Applied Physics A, 63, 171-178.

[34]   Tedesco, J.L. (2007) Electrical Characterization of Transition Metal Silicide Nanostructures Using Variable Temperature Scanning Probe Microscopy. Thesis, North Carolina State University, 232 p.

[35]   Sze, S.M. and Ng, K.K. (2006) Physics of Semiconductor Devices. 3rd Edition, John Wiley and Sons, New York, 832 p.

[36]   Ayyildiz, E., Turut, A., Efeoglu, H., Tüzemen, S., Saglam, M. and Yogurtcu, Y.K. (1996) Effect of Series Resistance on Forward Current-Voltage Characteristics of Schottky Diodes in the Presence of the Interfacial Layer. Solid-State Electronics, 39, 83-87.

[37]   Tung, R.T. (2001) Recent Advances in Schottky Barrier Concepts. Materials Science and Engineering, 35, 1-138.

[38]   Korkut, H. (2013) Semiconductor Type Dependent Comparison of Electrical Characteristics of Pt/InP Structures Fabricated by Magnetron Sputtering Technique in the Range of 20 - 400 K. Nano-Micro Letters, 5, 34-39.

[39]   El-Menyawy, E.M. (2014) Fourier Transform Infrared, Optical Properties and Schottky Junction Application of 2-[(antipyrinyl)-hydrazono]-3-oxo-N-pyridin-2-yl-butyramide Thin Films. Journal of Molecular Structure, 1068, 198-203.

[40]   Sun, K.W. and Fan, T.Y. (2010) Temperature Dependence of Current-Voltage Characteristics in Individual Sb2Se3 Nanowire. Materials Sciences and Applications, 1, 8-12.

[41]   Mtangi, W., Auret, F.D., Nyamhere, C., Janse van Rensburg, P.J., Chawanda, A., Diale, M., Nel, J.M. and Meyer, W.E. (2009) The Dependence of Barrier Height on Temperature for Pd Schottky Contacts on ZnO. Physica B, 404, 4402-4405.

[42]   Meyaard, D.S., Cho, J., Schubert, E.F., Han, S.H., Kim, M.H. and Sone, C. (2013) Analysis of the Temperature Dependence of the Forward Voltage Characteristics of GaInN Light-Emitting Diodes. Applied Physics Letters, 103, Article ID: 121103.

[43]   Yüksel, O.F. (2009) Temperature Dependence of Current-Voltage Characteristics of Al/p-Si(100) Schottky Barrier Diodes. Physica B, 404, 1993-1997.

[44]   Shroder, D.K. (2006) Semiconductor Material and Device Characterization. 3rd Edition, IEEE Press, Arizona State University.

[45]   Matsushita, H., Tojo, Y. and Takizawa, T. (2003) Schottky Properties of CuInSe2 Single Crystals Grown by the Horizontal Bridgman Method with Controlling Se Vapor Pressure. Journal of Physics and Chemistry of Solids, 64, 1825- 1829.

[46]   Koscielniak-Mucha, B. and Opanowicz, A. (1994) Hole Tunneling through the In/p-CuInSe2 Schottky Barrier. Physica Status Solidi (a), 141, K67-K70.

[47]   Gorlei, P.N., Kovalyuk, Z.D., Orletskii, V.B., Sydor, O.N., Netyaga, V.V. and Khomyak, V.V. (2004) On the Mechanism of Current Passage in Metal/p-CuInSe2 Structures. Technical Physics, 49, 658-659.

[48]   Zhang, Z.W., Guo, H.Y., Li, J. and Zhu, C.F. (2011) Preparation and Characterization of Electrodeposited-Annealed CuInSe2 Thin Films for Solar Cells. Chinese Journal of Chemical Physics, 24, 225-229.

[49]   Parihar, U., Ray, J.R., Kumar, N., Sachdeva, R., Padha, N. and Panchal, C.J. (2011) Impact of Annealing on CuInSe2 Thin Films and Its Schottky Interface. Journal of Nano- and Electronic Physics, 3, 1086-1095.

[50]   Farag, A.A.M., Yahia, I.S. and Fadel, M. (2009) Electrical and Photovoltaic Characteristics of Al/n-CdS Schottky Diode. International Journal of Hydrogen Energy, 34, 4906-4913.

[51]   Chawanda, A., Coelho, S.M.M., Auret, F.D., Mtangi, W., Nyamhere, C., Nel, J.M. and Diale, M. (2012) Effect of Thermal Treatment on the Characteristics of Iridium Schottky Barrier Diodes on n-Ge (1 0 0). Journal of Alloys and Compounds, 513, 44-49.

[52]   Karatas, S., Cakar, M. and Türüt, A. (2014) On the Electrical Characteristics of the Al/rhodamine-101/p-Si MS Structure at Low Temperatures. Materials Science in Semiconductor Processing, 28, 2-9.

[53]   Reddy, V.R., Reddy, M.S.P., Kumar, A.A. and Choi, C.J. (2012) Effect of Annealing Temperature on Electrical Properties of Au/Polyvinyl Alcohol/n-InP Schottky Barrier Structure. Thin Solid Films, 520, 5715-5721.

[54]   Gray, J.L., Schwartz, R.J. and Lee, Y.J. (1994) Numerical Modeling of CuInSe2 and CdTe Solar Cells. ECE Technical Reports, Paper 173, Purdue University.

[55]   Bayhan, H. and Ozden, S. (2007) Frequency Dependence of Junction Capacitance of BPW34 and BPW41 p-i-n Photodiodes. Pramana Journal of Physics, 68, 701-706.